
Enhancing Deep Reinforcement Learning with

Compressed Sensing-based State Estimation

Shaswot Shresthamali

Keio University

shaswot@acsl.ics.keio.ac.jp

Masaaki Kondo

Keio University

kondo@acsl.ics.keio.ac.jp

Abstract—In various real-world applications, sensor data col-
lected for adaptive control using Reinforcement Learning (RL)
often suffer from missing information due to sensor failures, data
transmission errors, or other sources of noise. Such missing data
can significantly hinder the agent’s ability to make informed
decisions and degrade performance. In this paper, we propose
a novel approach to address this challenge by leveraging Com-
pressed Sensing (CS) techniques to recover missing information
from the sensor data and reconstruct the state observation. The
reconstructed state is then fed to the RL agents. As a result,
they exhibit enhanced robustness and intelligence, surpassing the
performance achievable when solely presented with noisy data
as state input.

I. INTRODUCTION

The rapid advancement of Reinforcement Learning (RL)

has sparked a lot of attention in their application in au-

tonomous systems and decision-making applications (e.g.,

power management within processor-memory systems and in

IoT networks [1], [2]). However in real world applications,

the observed data may often suffer from missing information.

This impedes the RL agent’s ability to execute optimal policies

and make reliable decisions. Missing data can arise from

a variety of sources, including sensor failures, unreliable

wireless communication channels, or the inherent limitations

of sensors in capturing certain events.

To address this challenge, we propose an innovative ap-

proach that integrates compressive sensing techniques with

RL. Compressive Sensing (CS) provides a powerful frame-

work for recovering missing information from incomplete

or undersampled data. By exploiting the sparsity of signals,

compressive sensing enables the reconstruction of missing

measurements with a high level of accuracy, even when

significant portions of the data are missing.

Missing observation data degrades the performance of RL

agents significantly during training and inference. However, by

integrating CS with the RL process, we can recover the “lost”

data and improve the quality of the observation data that is

made available to the RL agent as shown in Figure 1. This

mitigates the detrimental effects of missing data and enables

the agent to make reliable and correct decisions. Consequently,

the RL agent exhibits improved performance compared to

agents trained solely on the noisy data.

In this study, we assume a pre-trained RL agent that needs

to make decisions despite missing observation information.

We take two representative (simulation) environments based

Fig. 1. Integrating Compressive Sensing for state reconstruction can drasti-
cally improve the performance of RL agents in environments where observa-
tion data may be missing.

on the Farama Gymnasium API -BipedalWalker-v3 and

VizDoom - and evaluate the effects of noisy observation and

performance recovery using CS for each of the environments.

The BipedalWalker-v3 requires the agent to control four

joints of a walking robot using 24-dimensional state observa-

tion. VizDoom requires the agent to learn to play a 3D first-

person shooter game called Doom [3] using rendered game

pixels as the observations. Naturally, in both environments,

incomplete observation data leads to performance degradation.

However, by utilizing CS-based state recovery, the agent can

fill in the missing information in its observations, thereby

avoiding significant compromise to the quality of its policy.

While alternative signal processing filters can be used to

interpolate the incomplete data, we demonstrate that such

techniques require manual domain-specific tuning and may not

necessarily improve the performance of RL agents. Although

CS has little overhead for BipedalWalker-v3, it incurs

significant computation time for VizDoom due to its large

observation dimension space. This latency is a bottleneck

for other fast-response environments. To overcome this, we

develop a GPU-accelerated solution to reduce the CS com-

putation time using the PyTorch framework. As mentioned

earlier, we solely concentrate on the inference side of RL

in this work. Nevertheless, similar performance enhancements

can be expected during the training phase. Specifically, this

work makes the following key contributions:

• We analyze the effects of incomplete observation infor-

mation during training and evaluation (inference) of RL

agents, demonstrating that incomplete state information

degrades the performance of RL during both training and

inference phases.

• We highlight that training RL agents on noisy data

does not necessarily result in superior performance and

robustness.

• We propose an RL framework that incorporates CS-based

techniques to recover missing state information.

• We provide empirical evidence through experimental

evaluations in different noisy scenarios, demonstrating

that our proposed method significantly mitigates perfor-

mance degradation.

• We perform a computational cost analysis of using CS-

based techniques to illustrate the tradeoffs involved in

using CS-based state recovery and show that GPU accel-

eration can significantly reduce the computation overhead

of CS.

The rest of this paper is organized as follows: Section

Section II provides an overview of related work in the field

of RL and CS. Section Section III presents the fundamental

concepts of CS and RL and Section IV details the proposed

methodology for incorporating compressive sensing into RL

training. Section V presents experimental methodology. Re-

sults and performance evaluations are reported in Section VI.

Finally, Section VII concludes the paper.

II. RELATED WORK

Compressive Sensing (CS) has garnered considerable atten-

tion in various fields, particularly in applications where mea-

surements are noisy and challenging to obtain. While various

studies have explored the combination of RL and CS, most

of them concentrate on enhancing CS using RL techniques.

[4] utilize RL to optimize the measurement matrix for time-

varying signals, and [5] tackle a similar problem for human

activity sensing systems. In contrast, this work focuses on

how CS can enhance RL performance by recovering missing

observation data. Although the vulnerability of RL systems

to noise has been extensively studied, the integration of CS

with RL agents in the presence of missing observation data

remains unexplored. [6] introduce a framework for learning

better rewards with faster convergence, even in biased noisy

environments. [7] address the challenge of adversarial action

noise and propose methods for training RL agents in such

scenarios. In terms of stability and convergence, [8] highlight

the detrimental effects of noise in the loss function during

training, which arises from the combination of bootstrapping,

function approximation, and off-policy training. CS-inspired

deep learning-based approaches [9], [10] propose to lever-

age generative models to enhance signal recovery. The most

closely related work is [11], where the authors propose a

method that employs image reconstruction loss and variational

autoencoders to learn a robust latent space representation

resilient to observational noise. However, this usually incurs

significant computational and training overhead.

III. BACKGROUND

A. Compressed Sensing

With compressed sensing framework, it is possible to re-

cover a high dimensional signal x ∈ R
n from a linear

measurement y ∈ R
p s.t. y = Cx where C ∈ R

p×n is the

linear measurement matrix. C is usually a short-fat matrix i.e.,

p << n. This means that it is possible to reconstruct x with

only p measurements instead of n measurements.

Solving for x is generally not possible because the ?? is

underdetermined. However, if we transform x to a K-sparse

signal s ∈ R
n (i.e., it has only K non-zero elements) through

a suitable transform basis, Ψ ∈ R
n×n (e.g., the Fourier basis)

such that y = Cx = CΨs = Θs, then it is possible to recover

a nearly perfect reconstruction of x with high probability given

a random C and a sparse s. [12], [13]. It is necessary for

Θ to satisfy the Restricted Isometry Property (RIP) which

requires C and Ψ to be incoherent (i.e., the rows of C

are not correlated with the columns of Ψ). Fortunately, the

RIP holds with high probability for random C and sparse

signals s. Furthermore, it is also important that the number

of measurements p be sufficiently large on the order of

p ≈ O(K log(n/K)) ≈ k1K log(n/K) (1)

where the constant multiplier k1 depends on how incoherent

C and Ψ are.

As a consequence of these properties, the distances between

two signals s1 and s2 are preserved (within limits) after their

projections by Θ i.e., it acts as a unitary transformation on K-

sparse vectors s and therefore enabling signal reconstruction

with l1 convex optimization with high probability.

B. Reinforcement Learning

RL is a machine learning paradigm where an agent learns to

make sequences of decisions in an environment to maximize a

cumulative reward. The agent interacts with the environment,

takes actions, receives feedback in the form of rewards, and

learns to choose actions that lead to higher rewards over time.

Actor-Critic algorithms combine the benefits of policy-

based methods (which can handle high-dimensional action

spaces and stochastic policies) with the advantages of value-

based methods (which provide stability and better convergence

properties). The actor learns a policy that maps states to

actions, aiming to maximize the expected cumulative reward.

The critic evaluates the actions taken by the actor and learns a

value function that estimates the expected cumulative reward

when following a particular policy. This provides feedback to

the actor on the quality of its actions.

In this work we employ two popular actor-critic algorithms

- the Proximal Policy Optimization (PPO) algorithm [14]

and Soft Actor Critic (SAC) algorithm [15]. Although the

details of the algorithm are outside the scope of this work,

in essence PPO maintains stability in the learning process by

ensuring that the probability ratios between old policies and

new policies do not exceed a certain threshold while SAC

trades off between the expected return and the entropy of the

policy and avoiding bad local optima. Both of these algorithms

are suitable for continuous state spaces and discrete actions

and show stable learning behavior.

IV. COMPRESSED SENSING FOR RL

We explore a scenario where the RL agent observes a multi-

dimensional state that contains random missing data. It is

important to note that this setting differs from a Partially

Observable Markov Decision Process (POMDP), where the

agent has incomplete information about the state despite

having access to complete observational state data. Our focus

excludes POMDP settings. Instead, we assume that the state

is fully Markovian i.e., the observation is complete but the

incoming observation data is incomplete. To mitigate the

impact of missing data on the RL agent’s performance, we

propose utilizing compressed sensing principles to recover the

missing state information.

To illustrate the effectiveness of our approach, we consider

two different scenarios where a trained RL agent has to

make action decisions when the incoming observation is noisy

due to incomplete observation data. In BipedalWalker-v3

scenario, the state dimensions are sensor information from a

walking robotic but some sensors fail randomly at different

times. This is a representative example of a robotics or IoT

application where the RL policy makes decisions based on

sensor information. In VizDoom scenario, the observational

space is image pixels from a video game, similar to the setting

described in [3], [11]. This example serves as a convenient

framework for visualizing and analyzing the reconstructed

signals. Moreover, images are one of the most convenient and

inexpensive ways of acquiring rich state information in most

real-world applications (e.g., using cameras for robotics). By

using these two representative scenarios, we want to highlight

that our proposed method is applicable to a wide range of

state vector signals, as long as a suitable sparse representation

is attainable through an appropriate linear transformation.

A. LASSO for Observational Data Recovery

The observation state for BipedalWalker-v3 consists

of 10 lidar rangefinder measurements, different speed and ve-

locity measurements as well as other sensor information (e.g.,

legs contact with ground). From our preliminary experiments

and analysis, we observe that most of these sensor data exhibit

some sort of periodicity and thus have sparse representations

when using the Fourier transform. For VizDoom, given that

the input image is sourced from video games, which also

exhibits sparse representations in a Fourier basis, we employ

the Discrete Cosine Transform (DCT) as our chosen transform

matrix, denoted as Φ. We assume that the noise resulting from

the loss of pixel information in the observation is entirely

random. Consequently, we can consider our measurement

matrix C to be incoherent with respect to the DCT transform

matrix Φ. In other words, the product of C and Φ, denoted

as CΦ = Θ, satisfies the Restricted Isometry Property (RIP)

condition.

Building upon the concepts discussed in the theory section

(Section III-A), we observe that it is possible to obtain a

sparse vector, denoted as ŝ, which is consistent with the

measurements y. Once ŝ is obtained, we can perform an

inverse transform to derive an estimate, denoted as x̂, of the

original observation signal x. While there exist various convex

optimization methods to solve for ŝ, we specifically focus on

the widely used least-squares regression technique called the

Least Absolute Shrinkage and Selection Operator (LASSO)

[16]. LASSO regression introduces an l1 penalty term to

regularize the problem, preventing overfitting and making

it well-suited for our objectives. Formally, the optimization

problem for LASSO with a given regularization parameter α
can be expressed as:

ŝ = argmin
s

(∥Θs− y∥
2
+ α∥s∥

1
) (2)

Here, the cost function is regulated by ∥s∥
1
=

∑k=1

n |sk|
to obtain the sparsest ŝ.

In the case of LASSO regression, we transform our noisy

2D input image into a flattened column vector, which becomes

our measurement y for the original image x. Although the

measurement matrix C is not explicitly provided, it can be

inferred easily by identifying the rows of y containing zero

values. Consequently, we determine Θ as CΨ by selectively

extracting the rows of Ψ that correspond to non-zero rows

in y. Subsequently, we input y and Θ into the LASSO

optimizer to obtain the sparse vector solution, denoted as ŝ.

The LASSO optimizer uses coordinate descent algorithm to

solve the underdetermined system of equation. Finally, we

reconstruct the original observation x̂ by applying the inverse

DCT to ŝ and appropriately reshaping the resulting vector (into

a 2D image format forVizDoom) which is our reconstructed

state observation.

V. EVALUATION METHODOLOGY

A. BipedalWalker-v3 Environment

We train the RL agent to solve BipedalWalker-v3

using the default SAC network architecture provided by the

stable-baselines3 library [17]. This network has fully

connected layers with 24 neurons in its input layer (state size)

shared by both actor and critic networks. The actor contains

8 neurons in its output layer (action space size) with two

hidden layers, each with 256 neurons. The critic has similar

architecture to the actor but only contains a single node that

outputs the values of the input state. The RL is trained for a

total of 1×106 timesteps with a learning rate of 3×10−4 and

a batch size of 256. Network updates are performed at every

timestep.

While training is carried out in a noise-free environment,

the inference (or test) is carried out in a noisy environment

(assuming faulty sensors). To emulate this, the state data for

some dimensions are randomly zeroed out with some proba-

bility given by the noise parameter. From our preliminary

experiments, we observe that only a certain set of sensor

signals are compressible BipedalWalker-v3 i.e., they

have a sparse representation in the Fourier frequency domain.

We analyze the effect of noise and subsequent reconstruction

using CS only for these sensor signals. Other state signals are

assumed to be not affected by noise.

Since CS requires the temporal history of each of the

compressible state observation signals, we store a record

of previous observations for a fixed time window. In our

experiments, a window size of 25 proved sufficient, consuming

approximately only 4KB of extra memory. Thus, at each

timestep, if any of the state dimensions is missing the state

information, we use CS to fill in this information using the

history of that particular state signals.

B. ViZDoom Environment

ViZDoom environment emulates a simplified version of a

3D first-person shooter game called Doom [3]. For our exper-

iments, we choost the BASIC scenario map which features a

rectangular room with gray walls, ceiling, and floor. In this

scenario, the shooter agent spawns along one of the longer

walls in the center, while a circular monster randomly spawns

somewhere along the opposite wall. The primary objective of

the agent is to eliminate the monster by shooting it as quickly

as possible without missing.

We deliberately choose this scenario due to its simplicity

and straightforward objectives. The agent’s task involves iden-

tifying the monster’s location, maneuvering left or right until it

is in front of the monster, and then firing. Therefore, the under-

lying RL problem is relatively straightforward. However, the

introduction of noise through the removal of pixels from the

observation frame creates difficulties for the agent in learning

the necessary features to recognize the monster. Consequently,

any performance degradation resulting from missing pixels can

be directly attributed to the lack of accurate state information

rather than limitations in the learning algorithm itself (e.g.,

sparse rewards, partial observation, or inadequate exploration).

To optimize computational resources and improve the effi-

ciency of our approach, we modify the rendering settings of

the original game engine. We choose to render the game in

grayscale frames with a resolution of 160 × 320 pixels, as

opposed to the default RGB24 format. Additionally, we crop

the frames to a size of 50×100 pixels, removing non-essential

elements such as the Heads Up Display (HUD), floor, ceiling,

and walls. This not only reduces the parameter size of the RL

network but also accelerates the LASSO image reconstruction

process.

Furthermore, to optimize computational costs and enhance

the learning process, we select every fourth frame while

skipping the three frames in between. This downsampling

approach helps reduce compute requirements while preserving

important temporal information, and may even accelerate

learning as reported in [18].

The RL agent has to choose between three actions at each

timestep: shoot, go-left, and go-right. Each episode

is constrained to a maximum of 300 timesteps. Throughout

the training process, the agent receives a reward of −1 at

each timestep. If the agent successfully shoots and eliminates

the monster, it obtains a reward of +101. Conversely, if the

agent fails to hit the monster, it incurs a penalty of −5. The

episode concludes either when the monster is killed or when

the episode reaches the maximum timestep limit. To ensure

training stability, we scale the rewards by a factor of 0.01.

Consequently, the highest achievable reward is 1, indicating

that the agent successfully eliminates the monster in the first

shot. Conversely, the lowest possible reward is −15, which

occurs when the agent fails to kill the monster within the 300

timesteps but continuously fires at each timestep.

We train the RL agent for ViZDoom in the BASIC scenario

map for a total of 1×106 steps using the default CNN architec-

ture for PPO algorithm provided by stable-baselines3

library. The feature extractor is composed of three CNN layers

with ReLU activation that feeds into the actor and critic

networks. Both are fully connected layers with 512 nodes.

During training, the learning rate is fixed at 1 × 10−4 and a

batch size of 32 is used. Network updates are performed every

4096 timesteps.

Similar to BipedalWalker-v3, the training is carried

out in a noise-free environment while the testing assumes a

noisy environment. To emulate missing sensor information,

we zero out random pixels in each frame. The missing pixel

probability is represented by the noise parameter. A high

noise means a higher likelihood of a pixel being zeroed out

i.e. being unsampled.

C. Experiment Setup

All experiments were run on a DGX-H100 machine that

contains NVIDIA H100 GPUs and Intel Xeon 8480C pro-

cessors (112 cores). For both BipedalWalker-v3 and

ViZDoom, we train five agents with different initialization

seeds in a noise free environment. These performance of

these agents are then assessed in noisy environments. The

objective is to analyze the impact of missing observation data

on the policies learned by the agents. Each agent (for both

environments) is evaluated for 20 game episodes under varying

levels of noise in the testing environment. The mean and

standard error of the rewards obtained in each episode are

recorded.

We then investigate the effect of employing CS for state

recovery on the RL agents’ performance. To achieve this,

we select the agents trained in noise-free environments and

evaluate their performance on environments with different

values of noise while utilizing compressed sensing to re-

construct the image prior to inputting it into the RL agent.

The mean and standard deviation of rewards over 20 episodes

are analyzed. In our experiments, we employ the LASSO

optimizer from the scikit-learn Python package, which

utilizes the coordinate descent algorithm. The regularization

parameter is set to alpha = 1× 10−3.

VI. RESULTS

A. Effect of missing data during training

One popular method to make RL agents robust to noise

is to train the RL agents in noisy environments. To analyze

Fig. 2. The RL agent takes longer to learn good policies as the noise is
increased.

Fig. 3. Agents trained in environments with lower levels of noise exhibit
poorer performance in environments with higher levels of noise. Interestingly,
agents trained in highly noisy environments perform even worse when the
noise is eliminated during evaluation. This observation indicates that the
introduction of noise during training does not necessarily enhance the agents’
robustness to noise during evaluation.

the effectiveness of this method, we train the ViZDoom RL

agent in noisy environments for different values of the noise

parameter. During training, we log the performance of the

learned policy every 5000 training steps for 10 episodes. (We

have not shown similar analysis for noise sensitivity during

training for BipedalWalker-v3 in the interest of space.)

In Figure 2, we present the learning performance of PPO

agents during the training process which displays the average

reward for the different agents, with shaded areas indicating

one standard deviation. As expected, the agent trained in a

non-noisy environment (noise = 0.0, blue) quickly learns

an effective policy, achieving a high reward within 1000
training steps. This is expected since the BASIC scenario

is relatively simple, with limited actions and straightforward

features, requiring minimal exploration. However, when pixels

are missing from the observation frame, the learning perfor-

mance deteriorates. In the case of extreme noise with a 90%

missing pixel probability (noise = 0.9, cyan), the learning

performance declines significantly. In this scenario, the agent

requires nearly 500K additional steps to achieve even half the

reward obtained in the non-noisy environment. This outcome

is not surprising as obfuscated pixels make it more challenging

for the agent to learn informative state representations for

deriving an effective policy. However, even when the noise

level is extremely high, the agent can still learn a reasonable

policy, albeit suboptimal. This is attributed to the effectiveness

of the CNN feature extractor network in filtering out noise

through its convolutional kernels and max-pooling operations.

In Figure 3, we compare the performance of different

ViZDoom agents in various noise settings. The plot displays

the average reward achieved by agents trained in a specific

noisy environment when evaluated in different environments

with varying levels of noise. The blue line represents an agent

trained in a non-noisy environment. As the noise parameter

increases in the evaluation environment, we observe a degrada-

tion in performance. Additionally, the policies of these agents

become less stable, as indicated by the wider error ranges

(shaded areas), as the evaluation noise increases. This outcome

is expected because the agent struggles to handle the noise

introduced by missing pixels, resulting in suboptimal state

representations and compromised policies.

On the other hand, agents trained in slightly noisy envi-

ronments (noise = 0.1, 0.2, 0.3) demonstrate robustness to

noise in the evaluation environment. However, when the noise

in the evaluation environment surpasses the level experienced

during training, their performance also deteriorates. This sug-

gests that introducing noise during training can enhance the

robustness of RL agents, but only up to a certain threshold.

For agents trained in highly noisy environments (noise =
0.4, ..., 0.9), we observe a degradation in performance even

when evaluated in less noisy environments. These agents

achieve their best performance when the evaluation noise

matches the noise level of their training environment. This

implies that these agents have learned policies that are specif-

ically tailored to the noise profile of their training environment.

Consequently, we cannot expect RL agents to acquire noise-

robust policies solely by introducing noise during training.

B. Enhancing RL performance with Compressed Sensing

We have seen that unexpected noise caused by missing

pixels negatively impacts the performance of RL agents and

merely training the agent in a noisy environment does not

lead to the acquisition of noise-robust policies. This approach

would require prior knowledge of the noise characteristics and

that the noise remain constant in the environment, both of

which are not generally possible. Thus, to mitigate perfor-

mance degradation resulting from missing pixel information,

we employ CS techniques to reconstruct the state from the

noisy state information.

In Figure 4, we compare the performance of RL agents

(which were trained in non-noisy environment) in various

noisy environments with and without state reconstruction.

The green bars represent the performance of agents without

any state reconstruction and serves as the baseline (error

bars represent one standard deviation). It is clear from the

Fig. 4. The performance of BipedalWalker-v3 decreases dramatically
as noise increases (green bars). However, by using CS, we can recover the
state information and dramatically restore the performance (orange bars).

Fig. 5. Comparison of ViZDoom RL agent performance using low pass
filter and compressed sensing for noise mitigation. The agent was trained in
a non-noisy environment. The dashed line and the gray shaded area represent
the mean and standard deviation of the rewards received by the agent when
evaluated in a non-noisy environment.

figure that the performance of the agents degrade rapidly

with increasing environmental noise. When noise increases

above 30%, the reward becomes negative and this shows that

the robot has a hard time even standing upright. However,

when we use CS to reconstruct the state information, we

observe that we can almost recover the agent to its original

performance (orange bars) even when there is a 50% chance

of sensor failure. Furthermore, the recovered state information

does not cause instability in the agents’ policy as evidenced

by the relatively low standard deviation. We also investigate

how the performance of RL agent is affected when we use

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

interpolation (applicable for only for 1-D signals) to fill in

the missing state information. This is shown by the blue bars

in Figure 4. We observe that PCHIP and CS methods have

similar reconstruction fidelity and are able to help the RL

agent recover its performance quite significantly. At very high

noise levels, CS cannot reconstruct the signal with high fidelity

because the number of samples is not enough (Equation (1)

due to the small window size of 25.

We observer similar advantages of using CS for ViZDoom.

Fig. 6. Comparison of image reconstruction using LASSO and lowpass filter.

Figure 5 presents a comparison of the ViZDoom RL agents’

performance with and without CS image reconstruction. We

also compare against the performance of the agents when

applying a lowpass filter to remove the high-frequency noise

due to missing pixels (similar to PCHIP for 1D signals). In

Figure 5, the average performance of the five agents trained in

a non-noisy environment and evaluated in environments with

different noise levels is shown. The horizontal dashed black

line and shaded gray region represents the average reward and

standard error obtained by these agents when evaluated over

20 episodes in a non-noisy environment. The bar plots depict

the rewards achieved when evaluated in noisy environments

using various state reconstruction techniques. The grayish

blue bars (labeled as vanilla) indicate the agent’s per-

formance in noisy environments without any reconstruction.

It is observed that increasing the noise level significantly

degrades the performance by up to 40%. However, by utilizing

compressive sensing techniques and employing LASSO for

state reconstruction, we can recover the performance to nearly

its original value (green bars labeled as LASSO). Even in the

extreme case where pixels have a 90% chance of being lost,

employing CS techniques can enhance the performance by up

to 20% compared to the baseline.

Additionally, we investigated whether filtering out the noise

using image filters can improve performance. The red bars

(lowpass) represent the RL agent’s performance when the

noisy state is preprocessed with a lowpass filter (kernel size

= 9). Interestingly, we observe that using such a filter does

not necessarily improve performance and may even decrease

it. The lowpass filter shows only a slight improvement in

performance only in highly noisy environments. We also

experimented with other common digital image processing

filters, such as Gaussian blur and Median blur. However, even

after extensive manual hyperparameter tuning (e.g., kernel

size), these filters did not improve the performance of the RL

agent. Figure 6 compares examples of reconstruction results

using LASSO and lowpass filter. We can observe that the

LASSO method is able to reconstruct the gun and the monster

with enough fidelity that the CNN can recognize them and pass

on the feature activations to the policy network.

C. Computation cost of Compressed Sensing

Fig. 7. LASSO computational time for reconstructing the sensor signals for
BipedalWalker is negligible and consumes almost no overhead because the
sensor data has only a few dimensions (window size = 25).

Figure 7 shows the average time required to process each

timestep in the environment for BipedalWalker-v3. This

involves generating and applying the noise to the observations

received from the environment API. This is a simulation

overhead (represented by orange bars) and is not related to the

computation cost of CS. The actual cost of CS is negligibly

small as evidenced by the slightly visible blue bars stacked on

the orange bars. This low CS computation time is possible

because the size of the window over which we store the

temporal history of different sensor signals is very small.

Fig. 8. Computational time for reconstructing a 50× 100 image from noisy
input with missing pixels for ViZDoom for various values of noise.

However, the process of reconstructing the state from noisy

and incomplete input data using LASSO can be computa-

tionally expensive when the input data has a large number

of dimensions as in ViZDoom. Figure 8 shows the LASSO

reconstruction time per frame for ViZDoom. The LASSO

algorithm is implemented using a highly optimized standard

scikit-learn library in a CPU using FP64 format. We

observe that the reconstruction takes hundreds of milliseconds

which is a significant overhead for a game that can run as fast

as 7000 fps. This is because image construction is achieved

using coordinate descent which require looping over each

element of the solution vector sequentially (for ViZDoom,

the solution vector has a size of 5000). We also observe that

the reconstruction time peaks at noise = 0.3 and decreases

as we increase the noise. This is because at low noise, the

reconstruction error is not very large and so the algorithm

converges quickly. Also when the noise is very high (e.g.,

noise = 0.9), the measurement vector y becomes shorter,

requiring fewer computations and iterations to find a solution.

However, these solutions tend to be non-optimal.

Fig. 9. The LASSO computational time for reconstructing for various values
of alpha (regularization strength).

The fidelity of the reconstructions can be controlled to

some extent by using the regularization parameter alpha.

We observe from our experiments that higher alpha values

yield better but grainier reconstructions. We also observe

that higher alpha decreases the LASSO computation time

as shown in Figure 9. A higher alpha gives less weight

to accurate optimization (reconstruction) and more weight to

sparsity, resulting in less iterations and shorter computation

times. Lower alpha encourage the optimizer to minimize

reconstruction error and therefore requires more reconstruction

time. Empirical analysis indicates that an alpha value of

1×10−3 strikes a good balance between reconstruction quality

and computation time.

Furthermore, the memory cost for implementing LASSO

increases exponentially with the size of the solution vector.

For ViZDoom, the image size is 50 × 100 and thus requires

the transform matrix Φ to be a 5000×5000 dense matrix. This

requires about ≈ 200 MB in FP64 representation. When we

use the original frame (without cropping), the image size is

120× 160. In this case, Φ is a square matrix with dimensions

of size 19,200 and requires 2.7GB of memory. Obviously,

the computation time required for optimization also increases

drastically. Once solution to overcome this limitation would be

to offload the memory and calculations to a GPU accelerator.

Fig. 10. Image reconstructions and average time overhead required for 120×
160 image.

Figure 10 shows the reconstructed images and the aver-

age reconstruction time for a 120 × 160 frame. The CPU

implementation uses the scikit-learn library which has

been optimized for FP64 operations using Fortran-contiguous

numpy array allocation for the Φ matrix. This takes about 6-8

seconds depending on the number of optimization iterations.

We observe that increase the number of iterations does not

necessarily improve the quality of the image.

The GPU implementation of LASSO is a straightfor-

ward naive implementation and there is still much room for

machine-specific optimization. However even with such a sim-

ple implementation, we were able to match the performance of

the highly optimized CPU implmentation. This was possible

because we were able to use the large amount of available GPU

memory and leverage the use of accelerated FP16 computation

to decrease the computation time. From Figure 10, we observe

that the FP16 GPU reconstruction has a much better fidelity

that the FP64 CPU reconstruction. This shows that there is

a possibility of decreasing the computation time and memory

overhead for CS by using GPUs.

VII. CONCLUSION AND FUTURE DIRECTIONS

In conclusion, this research work explored the use of

CS techniques to enhance the performance of RL agents in

environments with insufficiently sampled and missing state

information. To address the performance degradation caused

by missing pixel information, CS methods were employed

to reconstruct the state from noisy and subsampled inputs.

The results showed that CS techniques could significantly

improve the performance of RL agents in environments with

limited state information. However, the reconstruction process

using LASSO can get computationally expensive especially for

higher-dimensional input reconstructions but this can be over-

come to some degree by using more suitable transform ma-

trices, convex optimization algorithms and GPU acceleration.

Overall, the findings of this research highlight the potential of

CS techniques to enhance the robustness and performance of

RL agents in challenging environments, opening doors to new

opportunities and applications.

ACKNOWLEDGMENT

We thank Wojciech Roga and Baptiste Chevalier for their

helpful discussions. This work was supported by the Center of

Innovations for Sustainable Quantum AI (JST Grant Number

JPMJPF2221).

REFERENCES

[1] S. Shresthamali, M. Kondo, and H. Nakamura, “Multi-objective rein-
forcement learning for energy harvesting wireless sensor nodes,” in 2021

IEEE 14th International Symposium on Embedded Multicore/Many-core

Systems-on-Chip (MCSoC). IEEE, 2021, pp. 98–105.
[2] Y. Shen, L. Schreuders, A. Pathania, and A. D. Pimentel, “Thermal

management for 3d-stacked systems via unified core-memory power reg-
ulation,” ACM Transactions on Embedded Computing Systems, vol. 22,
no. 5s, pp. 1–26, 2023.

[3] M. Wydmuch, M. Kempka, and W. Jaśkowski, “ViZDoom Competitions:
Playing Doom from Pixels,” IEEE Transactions on Games, vol. 11, no. 3,
pp. 248–259, 2019, the 2022 IEEE Transactions on Games Outstanding
Paper Award.

[4] N. Karim, A. Zaeemzadeh, and N. Rahnavard, “Rl-ncs: Reinforcement
learning based data-driven approach for nonuniform compressed sens-
ing,” in 2019 IEEE 29th International Workshop on Machine Learning

for Signal Processing (MLSP). IEEE, 2019, pp. 1–6.
[5] G. Liu, R. Ma, and Q. Hao, “A reinforcement learning based design of

compressive sensing systems for human activity recognition,” in 2018

IEEE SENSORS. IEEE, 2018, pp. 1–4.
[6] J. Wang, Y. Liu, and B. Li, “Reinforcement learning with perturbed re-

wards,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 34, no. 04, 2020, pp. 6202–6209.

[7] C. Tessler, Y. Efroni, and S. Mannor, “Action robust reinforcement learn-
ing and applications in continuous control,” in International Conference

on Machine Learning. PMLR, 2019, pp. 6215–6224.
[8] H. Van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, and

J. Modayil, “Deep reinforcement learning and the deadly triad,” arXiv

preprint arXiv:1812.02648, 2018.
[9] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing

using generative models,” in International Conference on Machine

Learning. PMLR, 2017, pp. 537–546.
[10] Y. Wu, M. Rosca, and T. Lillicrap, “Deep compressed sensing,” in

International Conference on Machine Learning. PMLR, 2019, pp.
6850–6860.

[11] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus,
“Improving sample efficiency in model-free reinforcement learning
from images,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 35, no. 12, 2021, pp. 10 674–10 681.
[12] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information

theory, vol. 52, no. 4, pp. 1289–1306, 2006.
[13] E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from

incomplete and inaccurate measurements,” Communications on Pure

and Applied Mathematics: A Journal Issued by the Courant Institute

of Mathematical Sciences, vol. 59, no. 8, pp. 1207–1223, 2006.
[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-

imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[15] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[16] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-

nal of the Royal Statistical Society: Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.

[17] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[18] S. Kalyanakrishnan, S. Aravindan, V. Bagdawat, V. Bhatt, H. Goka,
A. Gupta, K. Krishna, and V. Piratla, “An analysis of frame-skipping in
reinforcement learning,” arXiv preprint arXiv:2102.03718, 2021.

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

	Introduction
	Related Work
	Background
	Compressed Sensing
	Reinforcement Learning

	Compressed Sensing for RL
	LASSO for Observational Data Recovery

	Evaluation Methodology
	BipedalWalker-v3 Environment
	ViZDoom Environment
	Experiment Setup

	Results
	Effect of missing data during training
	Enhancing RL performance with Compressed Sensing
	Computation cost of Compressed Sensing

	Conclusion and Future Directions
	References

