Multi-objective Reinforcement Learning *for* Energy Harvesting Wireless Sensor Nodes

Shaswot Shresthamali Keio University

Masaaki Kondo Keio University

Hiroshi Nakamura The University of Tokyo

Billions of Autonomous Sensor Nodes

- Energy Harvesting Wireless Sensor Nodes (EHWSNs)
 - sense, process and transmit data wirelessly
 - harvest energy from the ambient environment

Autonomous Perpetual Operation

- Millions of usage scenarios (deploy-and-forget)
- Massive scaling

Source: Cisco Annual Internet Report, 2018-2023

2

Energy Neutrality and multiple objectives

Energy Neutral Operation

- Balancing energy generation and consumption
- Modern EHWSNs are **multi-task**
- Sensing
- Processing
- Communication
- Allocate energy among tasks
 - To maximize utility
 - According to user priority
 - Only known during runtime (not a priori)

[Nakamura et al 2017, SenStick: Comprehensive Sensing Platform with an Ultra Tiny All-In-One Sensor Board for IoT Research]

Optimizing over multiple objectives

• Use Multi-objective Reinforcement Learning (MORL) to learn the energy management policy

Proposal	 General Multi-Objective MDP Formulation Continuous States and Actions Single/Multiple rewards Novel low-compute MORL algorithms
Results	 Near-optimal policies Better than scalarization methods

- Low learning costs
- Runtime Tradeoffs

Single-objective RL (SORL)

Downtimes

X

Multi-objective RL (MORL)

Node utility,
$$w_t = \omega_t^A \times r_t^A + \omega_t^B \times r_t^B + \omega_t^C \times r_t^C$$

3. Optimizing over Multiple Objectives

https://www.fm-magazine.com/news/2019/nov/resource-allocation-best-practices-201922378.html

Challenges of learning with many rewards

Scalarization

Mix rewards into one scalar

- Aoudia et al., 2018:
 - Multiply rewards together
 - Confounds rewards (noisy interference)
- Ferreira et al., 2018:
 - Add rewards together
 - Tradeoffs not possible
 - Prior knowledge of relative weights required
- Hsu et. al., 2014:
 - Complicated unintuitive reward function
 - Unexpected behavior (reward hacking)

Single Scalar Reward

Proposed MORL Framework

- I. General Multi-Objective MDP Formulation
 - Rewards
 - Simpler, precise, intuitive rewards
 - Multiple sources of rewards (reward vector)
 - States
 - Continuous
 - Inclusion of temporal information (more Markov)
 - Actions
 - Continuous
 - Relative actions (Safe actions)
- 2. Low compute MORL algorithms (based on DDPG) [Lillicrap et. al., 2015]
 - Runtime MORL
 - Runtime tradeoffs using pre-learned greedy policies
 - Off-policy MORL
 - Learn tradeoff policies from scratch with low learning costs

For efficient learning

Simulation Parameters

Component	Rating		6
Battery (Rechargeable Li-Ion)	2000 mAh		Trans and
Solar Panel	100 m A		
		Foldable Solar panel (100 mAh)	Li-Ion Battery (2000mAh)
Device	Rating		
Waspmote Sensor Platform ATmega1281@15 MHz)	I7 mA		
Comm. Device (Zigbee 3)	40 mA		
Sensor (GPS)	32 mA		
TOTAL	89 ~ 100 mA	Wasp	omote

Parameter	maximum value	minimum value
Battery, b_t	b_{max}	$b_{min} = 10\%$ of b_{max}
Harvester, h_t	$h_{max} = 5\%$ of b_{max}	hmin = 0
EHWSN, z_t	$z_{max} = 5\%$ of b_{max}	$z_{min} = 0.5\%$ of b_{max}
Requests, d_t	$z_{max} = 5\%$ of b_{max}	$z_{min} = 0.5\%$ of b_{max}

Experimental Results

- Near-optimal Performance
 - Superior to scalarization methods

• Dynamic Runtime Tradeoffs

- Low learning cost
 - Safer Exploration
 - Faster learning

Multiple Objectives

Energy Neutral Performance (ENP)

Sensing and Transmission

Energy Scheduling

- At each timestep, the node allocates energy budget for
 - Sensing (w.r.t. user requirements)
 - Transmission (w.r.t. channel conditions)
- By taking the user-defined relative priority (ω) between
 - Sensing (ω_{sense})
 - Transmission (ω_{tx})
 - Energy-neutral performance (ω_{ENP})
- While ensuring long-term energy neutrality
 - Lower Downtimes = Better Energy Neutrality

Off-policy MORL Algorithm

• Tradeoff between sensing, transmission and energy-neutrality

Increasing ω_{sense} increases sense-utility correspondingly:

 $red \rightarrow green \rightarrow orange \rightarrow blue$

15

Off-policy MORL Algorithm

- Tradeoff between sensing, transmission and energy-neutrality
- $\omega = (\omega_{sense}, \omega_{tx}, \omega_{ENP})$

Off-policy MORL Algorithm

- Tradeoff between sensing, transmission and energy-neutrality
- $\omega = (\omega_{sense}, \omega_{tx}, \omega_{ENP})$

Off-policy MORL Algorithm

- Tradeoff between sensing, transmission and energy-neutrality
- $\omega = (\omega_{sense}, \omega_{tx}, \omega_{ENP})$

Conclusion

- EHWSNs require RL based methods for
 - Adaptive, scalable policies
- RL is difficult for EHWSNs due to
 - Difficult problem formulation
 - High learning costs
 - High computation costs
 - Multiple objective optimization problem
- Traditional MDPs and scalarization methods
 - Are sub-optimal
 - Have high-learning costs
 - Cannot tradeoff
 - Require complicated reward functions
- Proposed MORL framework
 - Can learn near-optimal policies
 - With low learning costs
 - Can tradeoff at runtime
 - Simple/precise and diverse rewards can be used

Shaswot SHRESTHAMALI

https://www.shaswot.com

Masaaki KONDO https://www.acsl.ics.keio.ac.jp/

Hiroshi NAKAMURA http://www.hal.ipc.i.u-tokyo.ac.jp

Japan Society for the Promotion of Science

Thank You

Your questions/comments and feedback are most welcome