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Abstract—Modern Energy Harvesting Wireless Sensor Nodes
(EHWSNs) need to intelligently allocate their limited and unre-
liable energy budget among multiple tasks to ensure long-term
uninterrupted operation. Traditional solutions are ill-equipped to
deal with multiple objectives and execute a posteriori tradeoffs.
We propose a general Multi-objective Reinforcement Learning
(MORL) framework for Energy Neutral Operation (ENO) of
EHWSNs. Our proposed framework consists of a novel Multi-
objective Markov Decision Process (MOMDP) formulation and
two novel MORL algorithms. Using our framework, EHWSNs
can learn policies to maximize multiple task-objectives and
perform dynamic runtime tradeoffs. The high computation and
learning costs, usually associated with powerful MORL algo-
rithms, can be avoided by using our comparatively less resource-
intensive MORL algorithms. We evaluate our framework on a
general single-task and dual-task EHWSN system model through
simulations and show that our MORL algorithms can successfully
tradeoff between multiple objectives at runtime.

I. INTRODUCTION

Energy Harvesting Wireless Sensor Nodes (EHWSNs) are

becoming increasingly popular as edge devices for the Internet

of Things (IoT). They are capable of untethered, autonomous

and long-term operation. Modern EHWSNs have sophisticated

System-on-Chips (SoCs) that enables them to perform a

variety of tasks like sensing, communication and processing

[1]. However, these nodes operate with very stringent energy

budgets and unpredictable energy availability. It is therefore

necessary for them to judiciously budget their energy among

multiple tasks to i) ensure energy neutrality for long-term

operation and ii) maximize the overall node utility. Energy

Neutral Operation (ENO) [2] requires that the average supply

and consumption of energy remain balanced for long-term

operation. On the other hand, maximizing node utility requires

intelligently expending energy for various tasks in order of

their user-defined priorities. Thus, optimal operation of a

general EHWSN requires i) proportioning energy between dif-

ferent tasks and ii) ensuring that the gross energy consumption

does not violate energy neutrality.

Traditionally EHWSNs optimized for a single objective us-

ing low-compute analytic methods such as linear programming

[2] and control systems [3], [4]. However, these solutions

were minimally adaptive and required significant hand-tuning.

As EHWSNs became more powerful, Reinforcement Learning

(RL)-based methods were proposed as an alternative [5], [6].

In this paradigm, the nodes learn the energy management

policy on the fly as opposed to having pre-programmed

heuristics. During RL, the node (or agent) interacts with its

environment and explores various energy management policies

via trial-and-error. A reward function gives feedback to the

node which it uses to optimize its policies and maximize

future rewards. With RL-based policies, the nodes can adapt

to their specific working environment and therefore be used

in a deploy-and-forget fashion. Moreover, since they require

minimal application-specific design bias, they could be mas-

sively scaled to a large number of applications with little or

no changes to the RL framework. This scalability of RL is an

extremely important advantage over analytic methods because

it allows a single framework to work for potentially billions of

EHWSNs in diverse applications. However, these RL solutions

focus on only one aspect of the EHWSN operation such as

ensuring ENO [6] or maximizing throughput [7], [8] or the

sensing rate [5], [9] and therefore are not suited for working

with multiple objectives.

Motivation: Modern EHWSNs require a general, integrated

solution that optimizes for multiple task objectives in addition

to maintaining ENO. Since all tasks draw energy from the

same limited source, tradeoffs need to be made based on

user-defined preference or priority. Generally, the relative

priorities are not known beforehand and can be adjusted only

after observing the possible tradeoffs. Hence, a multi-objective

optimization approach may be more suitable for this kind of

problem.

Current multi-objective solutions for EHWSNs have pro-

posed to reduce the multiple objectives to a set of con-

straints and a single objective [10]. They require very strong

application-specific assumptions and design-bias (e.g., non-

causal information/ network dependent optimization objec-

tives). This approach is not general and cannot scale well.

Traditional single-objective RL (SORL) solutions are also not

suitable for optimizing over multiple objectives. SORL is

based on learning from a single scalar feedback reward signal

corresponding to a single objective. They cannot accommodate

multiple sources of rewards (i.e., multiple optimization ob-

jectives). Some have tried to work around this by projecting

the rewards onto a scalar [5], [8], [11], [12]. However, as we

will see later, this approach requires strong prior assumptions,

produces sub-optimal policies and cannot tradeoff dynamically

at runtime. Thus current analytic and RL solutions are insuf-

ficient for optimization of modern EHWSNs.

Contributions: In this work, we propose a novel MORL



framework for multi-objective optimization of EHWSNs. We

use RL over analytic approaches due to its adaptivity and

generality. Our proposed framework consists of a novel Multi-

Objective Markov Decision Process (MOMDP) formulation of

the EHWSN optimization problem and two MORL algorithms.

With our proposed solution, EHWSNs can learn intelligent

policies (with reduced learning costs) to i) maximize multiple

task objectives, ii) optimize gross device energy consumption

for long-term ENO and iii) dynamically tradeoff between

objectives during runtime. Specifically, we make the following

contributions in this paper:

• We present a simple but general system model for multi-

task EHWSNs in Section III that accommodates multiple

tasks objectives and their relative priorities. Based on this

system model, we specify the MORL problem in the form

of a general MOMDP (Section V-A).

• We propose a novel MORL algorithm, Runtime MORL,

that reuses pre-trained SORL policies for dynamic trade-

offs at runtime (Section V-B).

• We propose another MORL algorithm, Off-Policy MORL,

that learns energy-neutral policies tabula rasa (within rea-

sonable computing costs) and is also capable of dynamic

runtime tradeoffs (Section V-C).

We give a brief review of related literature in Section II.

We explain our experimental setup in Section VI and evaluate

our proposed framework extensively through simulations of

single-task and dual-task EHWSNs. We discuss the results

of our experiments in Section VII before concluding with

Section VIII.

II. RELATED WORK

Multi-objective optimization have traditionally focused

mostly on network performance rather than node energy-

neutrality [10]. Node-centric RL solutions have primarily

focused on using scalarized reward functions [8], [11], [12].

Other sophisticated MORL algorithms that overcome the lim-

itations of scalarization and enable a posteriori tradeoffs exist

but at extremely high learning and computation costs [13],

[14]. Our proposed method cuts down these costs significantly

(by at least an order of magnitude). To our knowledge, our

work is the first to use “true” MORL for ENO in EHWSNs and

enable tradeoffs. Consequently, we have yet to address issues

of intermittent computing, task dependency and network-based

optimizations. More importantly, there is still work required to

implement our MORL solution in very resource-constrained

IoT systems. Some possible directions for this would be to

use tabular methods [5], [6], linear function approximation

[7], [8] or distributed learning [15]; since our framework is

theoretically applicable for tabular RL or other less compute-

intensive RL. It may also be possible to compress the neural

networks to fit within given SoC requirements. There have

been encouraging results where researchers have been able

to compress and fit a 16 GB ImageNet model in a micro-

controller (less than 1 MB) [16] within reasonable limits of

accuracy and latency. In [9], [17], the authors implement RL in

low-power hardware. With more efficient learning algorithms
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Fig. 1: A general system model for multi-task EHWSNs.

and power-efficient and powerful processors, it may soon be

possible to implement our MORL in small IoT edge devices.

III. SYSTEM MODEL

Our system model (Figure 1) assumes a harvest-store-use

solar EHWSN that is required to be always on. The EHWSN

is equipped with an energy harvester and a finite energy

buffer. The node receives user requests to execute different

tasks related to sensing, communication and processing. Each

request has a corresponding energy demand required to meet

different performance requirements such as sensing rates [4]

and throughputs [5], [7].

The MORL agent works in discrete timesteps. It intel-

ligently allocates the energy among different tasks to gen-

erate task-utilities and ultimately maximize the node-utility.

It observes its environment (the system state) at timestep t
to decide the conformity of ith task kit ∈ [ 0, 1] , to its

demand dit ∈ [ zimin, z
i
max] . The energy allocated to task

i is zit = max(zimin, d
i
t × kit) which generates a task-utility

of ui
t = min(1, U i(zit/d

i
t)), where U i is a monotonically

non-decreasing function. The constraint ui
t ≤ 1 accounts for

the fact that over-provisioning does not lead to increased

utility. Traditional solutions usually overlooked the issue of

task utilities and opportunistically maximized duty cycles [6],

[15]. Our system model is more general and realistic because

it maximizes energy consumption only as requested.

A. Energy Neutral Operation

At time t, the battery level is bt ∈ [ 0, bmax] , the

harvested energy is ht ∈ [ 0, hmax], the total energy demand

is dt =
∑n

i=1 d
i
t and the energy consumed by the node is zt =

∑n
i=1 z

i
t s.t. zmin ≤ zt ≤ zmax. The energy dynamics of the

system is therefore given by bt+1 = min(bt+(ht−zt), bmax).

Perfect energy-neutrality is guaranteed if ht − zt = 0∀t.
However, this may not always be possible or desirable. The

sensor may need to operate during the night (ht < zt); or, it

may not be optimal to greedily use all harvested energy (ht =
zt) because some of that energy could be saved to extract more

utility in the future. However, when E[z] = E[h], E[·] being



the expectation operator, the node can be considered energy-

neutral. The node is operational at time t if bt + ht ≥ zmin.

Otherwise, there is a downtime. In such a case, the node is non-

operational and uses all of the harvested energy to replenish

its battery to a user-specified level and then resumes operation.

Ideally we would like an energy management scheme that

minimizes downtimes but ensures that all the energy harvested

is intelligently used to maximize utility. The energy-neutrality

of the node at time t is given by the Energy Neutral Perfor-

mance (ENP) metric et =
∑t

0 B(ht−zt) = b0− bt, expressed

as the total difference between harvested and consumed energy

[5], [6], [15].

The ENP-utility is uENP
t , given by a function UENP (et)

which reflects the energy-neutrality of the node. The node-

utility is a weighted sum of the individual task-utilities w.r.t.

their priorities. For an EHWSN with n-tasks, the relative

priorities between its n + 1 objectives is expressed by ωt =
(ω1

t , ω
2
t , ..., ω

n+1
t ) where ωi

t ∈ [0, 1] is the priority/preference

for the ith objective. ωn+1
t = (1 −

∑n
i=1 ω

i
t) is the implied

priority for the energy-neutrality of the node. With a slight

abuse of notation, for single-task EHWSNs, the priorities of

task maximization and ENO are represented by ωt and (1−ωt).

The agent’s ultimate objective is to maximize the overall node-

utility wt =
∑n+1

i=1 ui
tω

i
t.

IV. THEORETICAL BACKGROUND

A. Single-objective RL

In standard SORL, at each timestep, an agent observes its

environment state st ∈ S and executes an action at ∈ A
according to some policy π(a|s). Consequently, it receives a

scalar reward rt that reflects the optimality of the action w.r.t.

the optimization objective and transitions to the next state s′.
The rewards are given by the reward function R(s, a, s′) and

are discounted by a factor of γ ∈ [0, 1]. This process iterates

until the agent reaches a terminal state (end of an episode) and

the process restarts. Using the rewards and its past experiences,

the agent learns increasingly better policies that maximize its

cumulative reward or return.

The Q-value of a state-action pair Qπ(s, a), w.r.t. policy π,

gives the expected return when executing action a from state s
as defined in Equation (1a) for an episode of length T . It can

be can be computed recursively by using the Bellman equation

in Equation (1b).

Qπ(s, a) = Eπ

[

T
∑

t=0

γtR(st, at, st+1)|s0 = s, a0 = a

]

(1a)

Qπ(s, a) = Eπ[R(s, a, s′) + γQ(s′, π(s′))] (1b)

Thus, RL basically involves i) learning the Q-values of all

state-actions pairs (predictive knowledge) and ii) learning a

policy to choose an action that maximizes the Q-value for

every state (procedural knowledge). We approximate the Q-

values with a neural function approximator Qθ(s, a) param-

eterized by θ (the critic). The policy is output by a function

πφ(s) with parameters φ (the actor). In this work we use

Fig. 2: The Pareto-front changes when the agent transitions

form state s1 to s2. Crosses indicate Pareto-dominated actions.

The marker size represents the utility of the action.

Deep Deterministic Policy Gradient (DDPG) [18], to learn

the actor and critic functions. We choose DDPG because it

accommodates continuous states and actions and is simple to

implement (compared to other similar RL algorithms).

B. Multi-objective RL

In a general multi-objective problem, an optimizing variable

is mapped by objective functions into a multi-dimensional

objective space. Pareto-optimal points correspond to those

mappings where the value of one objective cannot be increased

without a decrease in the value of at least one another objec-

tive. The overall utility of the variable is a linear combination

of its mapped objective values according to the user-defined

weights (non-linear utility functions are outside the scope of

this work).

In our MORL framework, the optimizing variable is the

agent’s action π(s) = a. The Q-functions Qπ(s, a) (and not

the instantaneous reward) are the objective functions because

they represent the long-term effect of the actions. However,

Qπ(s, a) is dependent on the state s, which changes at every

timestep. This is shown in Figure 2 where the same set of

sampled actions map to different points in the objective space

when the state changes from s1 (blue) to s2 (orange). It is

due to this non-static objective space that traditional elitist

multi-objective optimization methods such as Monte Carlo

(MC) rollouts or Evolutionary Algorithms (EA) are infeasible.

These methods require multiple rollouts and generations which

consume a lot of time and resources.

In general, MORL solutions need to learn the Q-functions

and a policy that can infer the optimal action from Pareto-

frontier. A general Multi-Objective Markov Decision Pro-

cess (MOMDP) for MORL with m objectives is defined by

(S,A,P,R, γ,Ω). S is the continuous state space, A is the

continuous action space and P(s′|s, a) defines the transition

probability from state s to s′ as a result of action a. We choose

continuous states and actions for generality (as compared to

MDPs with discrete state-actions spaces in previous works [5],

[6]). The reward function is now a vector function, R(s, a) =
[R1(s, a), R2(s, a), ..., Rm(s, a)] and the discount factors for

each objective are given by γ = [γ1, γ2, ..., γm]. Ω determines

the space of preferences among the m objectives. The MORL

policy µ is now associated with an m-dimensional vector Q-

value function Qµ = [Q1, Q2, ..., Qm] whose components

correspond to the different objective functions. µ extracts the



Pareto-optimal action w.r.t. the user-preference ω ∈ Ω. In

the following section, we develop a suitable MOMDP for

EHWSNs and present solutions to learn the vector Q-functions

and extract the optimal actions.

V. PROPOSED MORL FRAMEWORK

A. MOMDP Formulation

Multiple Reward Functions: Modern EHWSNs requires a

reward function that accommodates multiple objectives. Pre-

vious SORL methods project these objectives into a scalar

that introduces noise and obfuscates the reward incentives.

The most significant drawback is that tradeoffs cannot be

made at runtime because it requires a priori knowledge of

the weights [11]. Another disadvantage is that scalarization

involves complicated reward shaping [5], [12] and introduces

significant design bias.

To avoid these limitations, our framework learns from

multiple separate independent reward signals. Each of these

reward signals represent one and only one optimization objec-

tive without any complicated reward shaping. We define the

rewards for each task by their task-utilities and for energy-

neutrality by the ENP-utility.

Robust State-Action Space: The state at time t is defined as a

tuple st = (τ, bt, b̄t, ht, ft, dt). ht is the harvested energy and

dt = (d1t , d
2
t , ..., d

n
t ) is a tuple of the different task requests.

We also include additional temporal information, τ which

represents the time of the day, b̄t =
∑T

k=0 bt−k/T which

is a moving average of battery values over a horizon T , and

ft ∈ [0, 1] which is a rough prediction of future energy supply

similar to [6].This addition of temporal information makes

learning process more robust and stable than previous works

[5], [8] which didn’t include sufficient temporal information

in their state definitions.

We define the action as the conformity of the node to

different task demands in our formulation. For an n-task

EHWSN, the action is kt = (k1t , k
2
t , ..., k

n
t ) where kit is

the conformity of the node to the request dit. This definition

ensures actions are safe in that it never over-provisions energy

and thus prevents unwanted battery depletion. It minimizes the

effects of catastrophic policies even if the learning fails unlike

actions definitions in previous methods [5], [6], [8].

B. Runtime MORL

We now describe our first algorithm, Runtime MORL (Al-

gorithm 1). An n-task EHWSN has an n-dimensional actions

space i.e., |k| = n. It has to optimize over n + 1 objec-

tives where the n + 1th objective is w.r.t. energy-neutrality.

Algorithm 1 uses n pre-trained greedy actor-critic networks

(πi, Qi) to output each component of the action space. πi

outputs the greedy conformity gi for the ith task. An additional

pre-trained greedy actor-critic (πENP , QENP ) outputs the

total conformity of the node gENP w.r.t the total demand

d =
∑n

i=1 d
i. We can construct a plane in the action space

given by gENP =
∑n

i=1 ki that represents all actions that

are greedily energy-neutral. We then determine the convex

hull that contains this plane and all the greedy actions. The

Action Space, (𝑛 = 1) Objective Space

𝑔𝐸𝑁𝑃
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Task Objective,𝑄1

Fig. 3: As we move from one greedy action to another in

the action space, we traverse along the Pareto-optimal frontier

in the objective space. Runtime MORL samples actions (red

crosses) from in between the greedy actions, g1 and gENP .

main intuition behind Algorithm 1 is that as we move from

one greedy action to another along this convex hull, we are

actually traversing along the Pareto-front in the objective space

making tradeoffs. This is valid in our case because task-

utility functions are monotonically non-decreasing function of

conformity (or action).

1) Minimizing Computation Costs: To find the opti-

mal action k∗ we sample the locally approximate Pareto-

optimal from the convex hull. For a given user-preference

ω = (ω1, ω2, ..., ωENP ), the algorithm samples j actions

x1, x2, ..., xj . The Q-values for all actions are evaluated by

linear combination of outputs of the critics Qi and QENP ,

weighted by the task preferences ωi and ωENP . The locally

optimal action is the one with the maximum value. This

way, a change in ω at runtime only requires inferring the

critics and a recomputation of the action-values, which is

not a very costly operation. Overall, this algorithm requires

much less computation than having to infer the entire Pareto-

optimal front and perform gradient descent to find the optimal

action. Another practical advantage of this sampling approach

is that we can always find an action at least as good as the

greedy actions without any assumption about the concavity of

the Pareto-frontier. This is significant because some MORL

methods do not perform well for concave Pareto-frontiers.

Figure 3 illustrates Algorithm 1 for a single-task scenario

(n = 1). Action g1 greedily maximizes the task-utility by

increasing conformity k, whereas gENP greedily maintains

energy-neutrality by decreasing k. Here, the convex hull is

simply a straight line bounded by g1 and gENP . Algorithm 1

samples two points on the line indicated by the red crosses.

The Q-values for all actions (greedy and sampled) are mapped

to the objective space using the outputs of the critics (Q1,

QENP ) and ω to find the optimal action. The action values

are represented by the size of the circles in the figure.

C. MORL with Off-Policy Corrections

We now consider the case when pre-trained greedy actors

and critics are not available and have to be trained from

scratch. With our second algorithm, Off-policy MORL (Al-

gorithm 2), the actors learn greedy policies, and critics learn



Algorithm 1: Runtime MORL

Input : ω ∈ Ω, priorities for n+ 1 objectives

s ∈ S , State

(Qi, πi), Greedy actor-critics, i = 1, 2, .., n
(QENP , πENP ), Energy-neutral actor-critic

Output: Action k∗ that maximizes utility, |k∗| = n
1 actionList = [ ] // Proposed actions list

2 for i = 1, 2, ...n, ENP do

3 gi = πi(s) // Greedy Actions

4 actionList.append(gi)
5 end for

6 Sample j actions x1, x2, ...xj from the convex hull of

actions in actionList and append to actionList
7 W = { }
8 for x in actionList do

9 W [x] =
∑n+1

i=1 Qi(s, x)ω
i

10 end for

11 return k∗ = argmax
x

W [x]

their Q-values from the experience samples generated by the

agent’s interaction with the environment. The agent executes

actions that lie in between the greedy actions depending on the

preference ω using the method in Algorithm 1. This means that

the critics have to learn the Q-values Qi for a greedy policy

πi from transitions generated by a different policy, say µ.

To account for this, we note that the probability of state

transitions from s to s′ are different for πi and µ. Thus, we

apply an off-policy correction by multiplying the expected

Q-values of the next state by their ratio of their transition

probabilities, ρi(s, s
′) = P(s′|s,πi)

P(s′|s,µ) . For our case, we approxi-

mate ρi(s, s
′) ≈ ωi. Although theoretical guarantees for this

are beyond the scope of this work, this approximation makes

sense. When ωi is closer to unity, it implies that µ is more

dominated by πi so the off-policy correction does not change

the expectation much. On the other hand, when ωi is very low,

µ is much further away from πi and thus the expected return

is reduced proportionately.

Qi(s, a) = Eπi
[ri + γiQi(s

′, πi(s
′))]

= Eµ[r
i] + γiρi(s, s

′)Eµ[Qi(s
′, πi(s

′))]

≈ Eµ[r
i + γiω

iQi(s
′, πi(s

′))]

(2)

VI. EVALUATION SETUP

A. Simulation Environment

We evaluate our framework by simulating solar EHWSN

systems based on the solar radiation data from 1995 to 2018,

logged hourly by outdoor rooftop pyranometers [19]. We

therefore set the time interval for one timestep to be one hour.

We use the first ten years (1995-2004) for training the RL

agents and the remaining years to test their performance. We

use an episodic MDP - with one episode lasting one day (or 24

timesteps). An episode abruptly terminates with zero reward

Algorithm 2: Off-policy MORL

Input : γi, discount factor for ith objective,

i = 1, 2, ...n+ 1
Initialize: Randomly initialize actor-critic pairs

(Qi, πi) and empty replay buffer D
1 for episode = 1, L do

2 for t = 1, T do // T = episode length

3 Observe the preferences ωt ∈ Ω
4 Observe state st
5 Select action at using Algorithm 1

6 Execute action at, observe the reward vector

rt = [r1t , r
2
t , ..., r

m
t ] and the next state st+1

7 Store (st, at, rt, st+1, ωt) in D
8 Sample minibatch B of N transitions from D
9 for i = 1, n+ 1 do

10 Update Qi using ri and γi in Equation (2),

11 Update πi

12 end for

13 end for

14 end for

TABLE I: Simulation Parameters

Parameter maximum value minimum value

Battery, bt bmax bmin = 10% of bmax

Harvester, ht hmax = 5% of bmax hmin = 0
EHWSN, zt zmax = 5% of bmax zmin = 0.5% of bmax

Requests, dt zmax = 5% of bmax zmin = 0.5% of bmax

when a downtime occurs. The parameters of the evaluated

EHWSN system, normalized to bmax, are shown in Table I.

These parameters roughly correspond to a realistic EHWSN

[20] with a current rating of 100mA and a 2000mAh battery.

The node goes into recovery mode when the battery capacity

drops below 10%. The requests are randomly generated by

the request function such that E[ht] ≈ E[dt]. This ensures that

ENO is actually feasible. A rough estimate of the weather

prediction ft, is given by adding some random noise to the

rolling average of ht over the next ten days.

B. Utilities and Reward Functions

We run our evaluations on single-task (bi-objective) and

dual-task (tri-objective) EHWSNs. The single-task node max-

imizes its sensing utility by increasing the conformity to the

user demand while maintaining long-term energy-neutrality.

Typically, the utility of sensed data increases linearly with en-

ergy consumption [2]–[4], [6]. Thus, we define the rewards for

sensing rate maximization by the sense-utility usense
t , which

grows linearly with conformity (energy usage) according the

linear-utility function in Figure 4 (left).

The ENP-utility uENP
t corresponds to the rewards that

represent the energy-neutrality of the node given by

uENP
t =

{

1, if b̄t ≥ bth
b̄t−bmin

bth−bmin
, otherwise

(3)

This reward function is illustrated in Figure 4 (right). b̄t is the

the moving average battery level over ten days and bth is a



Fig. 4: Linear and concave reward functions quantify the

utilities for different tasks such as sensing, communication and

processing. The ENP-utility function indicates the long-term

energy-neutrality of the node.

user-defined battery threshold. This is similar to the reward

functions in [5], [6], [12], [15] except that it has minimal

reward shaping and uses b̄t instead of bt. bth is fixed at 80%

of bmax for our case but this may be adjusted as necessary.

We use the average battery level here because it reflects the

long-term temporal nature of ENO. For single-task EHWSN, ω
reflects the relative preference between maximizing the sense-

utility and ENP-utility. ω = 1 maximizes sense-utility and

ω = 0 emphasizes energy-neutrality.

For dual-task EHWSNs, we consider an EHWSN system

that needs to sense and transmit its data. In addition to

remaining energy-neutral and maximizing its sense-utility, it

also has to maximize its throughput. Here, the conformity

k = z/d represents the SNR and the node’s throughput P
is given by Shannon’s capacity formula P = log(1 + k).
The task-utility and reward is therefore utx

t = P . Higher

throughput requires higher SNR but has diminishing returns.

This relationship is represented by the concave-utility reward

function in Figure 4. For sake of example, this reward function

assumes Binary Phase Shift Keying (BPSK) modulation with

additive white Gaussian noise and Rayleigh fading. At every

instant, the dual-task node has to decide how much energy

it must allocate to transmission and sensing tasks so as to

maximize its throughput (or tx-utility) utx
t and sense-utility

usense
t , while ensuring long-term ENO (maximizing uENP

t ).

The preference between the objectives is given by a tuple

ω = (ωsense, ωtx, ωENP ) s.t. ωENP = 1− (ωsense + ωtx).

C. Metrics

We compare the task-utilities between different solutions

by their annual average. The energy-neutrality of different

methods is compared on the basis of the total number of

times the node goes into recovery mode (downtimes). This

is a more direct representation of the actual energy-neutrality

than the ENP-utility and facilitates fair comparisons. An

intelligent policy finds the right balance between maximizing

task-utilities and minimizing downtimes. Since the training

period is the same for all RL agents, the learning costs are

given by the number of downtimes that happen during the

training period, lesser being better. Ideally, we would like the

node to learn an optimal energy management policy with as

few downtimes as possible.

TABLE II: Multi-objective ENO agents

Method Name Rewards/Values

Ours morl runtime

(2-task)
ωQπsense + (1− ω)Qπenp

Ours morl multi

(3-task)
ωsenseQ

πsense+ωtxQ
πtx+

ωENPQπenp

Scalar Product [5], [8] mul scalar usense
× uENP

Scalar Sum [11] add scalar ωusense + (1− ω)uENP

Fig. 5: Agent enp (ours) has similar energy-neutrality (down-

times) as the most energy-neutral policy max enp. sense (ours)

sacrifices some of its energy-neutrality to increase its utility.

VII. EXPERIMENTAL RESULTS

Each experiment is executed ten times with different seeds.

The average over all seeds are used for comparison. The

interquartile range (IQR) is indicated by error bars (not shown

in some figures for clarity). A summary of the different MORL

agents we evaluate is given in Table II.

A. Baselines

In Figure 5, we compare between different RL policies

against a baseline heuristic policy called max enp (blue) w.r.t.

their sense-utilities (top) and downtimes (bottom). max enp

is the most energy-neutral policy with the minimum possible

downtimes. max enp increases node conformity k monoton-

ically with rising battery levels in a non-linear fashion. The

hyperparameters for this function were empirically determined

using greedy search and non-causal information. No policy

can extract higher utility than max enp without increasing the

number of downtimes.

Figure 5 also shows three SORL agents (γ = 0.997):

sense (red), enp (green) and mul scalar (purple). sense and

enp maximize sense-utility and ENP-utility respectively using

the linear-utility and ENP-utility reward functions (Figure 4).

mul scalar uses a scalarized reward given by rt = usense
t ×

uENP
t similar to [8], [12].

We observe that sense has the highest utility but also

correspondingly highest number of downtimes. This is due

to its reward function that is designed solely to maximize its

utility. Although sense extracts higher utility within acceptable

limits of energy-neutrality, we cannot say whether it is optimal.

A more optimal solution would achieve a higher sense-utility



Fig. 6: morl runtime(ω) (Algorithm 1) can tradeoff sense-

utility with energy-neutrality (downtimes) at runtime.

while maintaining the same number of downtimes as sense.

It is difficult to define absolute optimal baselines in this case

and so we use sense as the baseline for comparing sense-utility

among RL agents.

On the other hand, enp has the lowest utility and lowest

number of downtimes on account of its ENO-centric reward

function. Although enp has lower utility than max enp, the

energy-neutrality (downtimes) of enp and max enp are similar

(green and blue bars). This means that enp is performing near-

optimally w.r.t. the ENO objective. These observations lead us

to conclude that the SORL agents are learning policies that

are consistent with their reward functions.

The performance of mul scalar agent lies somewhere in

between that of sense and enp. Due to its scalarized reward

function, mul scalar is neither as energy-neutral as enp nor as

useful as sense. This is a limitation of scalarization methods

for SORL. It shows that while one can end up with a

working policy with scalarization, due to the ”mixing” of

rewards, it is not fully clear what objective is actually being

optimized. Furthermore, it is not at all possible to tradeoff

between different objectives with the reward scheme used in

mul scalar.

B. Scalarization and Runtime Tradeoffs

We now consider the dual-objective case when the single-

task EHWSN agent has to tradeoff between maximizing the

sense-utility usense
t , and the ENP-utility uENP

t . For a given

ω, the agent has to maximize the node-utility, wt = ωusense
t +

(1− ω)uENP
t .

We compare between two RL agents: morl runtime(ω)

and add scalar(ω). morl runtime(ω) uses reuses the sense

and enp agents from the previous section and our proposed

Runtime MORL algorithm (Algorithm 1) to generate tradeoff

policies. add scalar(ω) uses scalarized reward functions given

by rt = ωusense
t + (1 − ω)uENP

t , similar to [5], [11], [12].

The important distinction between these two methods is that

morl runtime(ω) can tradeoff between objectives even if ω is

provided only at runtime. In contrast, add scalar(ω) needs ω
to be known before the training process and has to be retrained

Fig. 7: morl multi agent has lower downtimes when ENO has

higher priority for ENO (green and red) than when it is low

(blue and orange). Similarly, for the same ωENP , the agent

trades off between sense-utility and tx-utility. (2015-2019 not

shown for clarity.)

every time ω changes. Scalarization methods are very limited

in their application precisely because of this requirement of

prior knowledge of ω.

Figure 6 shows the test results of morl runtime(ω) and

add scalar(ω) for different values of ω (held constant during

testing). We observe that our morl runtime(ω) agent can

indeed tradeoff for different ω. High priority (ω = 0.8,

brown) increases utility and downtimes and vice versa for low

priority (ω = 0.2, blue). Similar tradeoffs are achieved by

add scalar(ω). Since we are plotting the annual average over

ten different seeds, the differences in the utility do not seem

very significant. However, when we consider the cumulative

utilities over long periods of operation, the differences are

quite substantial.

We note that the effect of tradeoffs is lesser for

morl runtime than add scalar. This is because the tradeoff

takes place in the Q-value space for morl runtime and in

the reward space for add scalar. This is actually preferable

because morl runtime is more optimal than add scalar. In

Figure 6, morl runtime (0.2) (blue) consistently extracts much

higher utility than add scalar (0.2) (cyan) for similar down-

times. In contrast, add scalar (0.8) (orange) has dispropor-

tionately higher downtimes for only a slight increase in sense-

utility than our morl runtime (0.8) (brown).

C. MORL for three objectives

Finally, we consider the case of the dual-task EHWSN.

We use Algorithm 2 to train an agent tabula rasa to op-

timize and tradeoff between its three objectives (sensing,

transmission and ENO). During training, the user priority

ω = (ωsense, ωtx, ωENP ) changes randomly at each timestep.

At test, we maintain a constant ω for each experiment for

comparison purposes.



Fig. 8: morl multi has acceptable learning costs (slightly

higher than sense) even though the learning problem is much

harder.

First, we observe how morl multi adapts its energy-

neutrality with changing ω (Figure 7. When energy-neutrality

has low priority (ω = (ωsense, ωtx, 0.1)), the downtimes (bot-

tom figure) are much higher than when ω = (ωsense, ωtx, 0.7)
(blue and orange vs green and red). Secondly, we observe

how the agent trades off between sense-utility and tx-utility

when ωENP = 0.1. In the top and middle figures, the blue

lines corresponds to a higher sensing priority than transmission

(ωsense > ωtx). As a result, the blue line scores higher on

the sense-utility (top) and lower on the tx-utility (middle)

than the orange line (ωsense < ωtx). This clearly shows the

tradeoff behavior. A similar observation can be made for when

ωENP = 0.7 (green and red lines).

We now turn our attention to the increased learning costs

of our MORL solutions. Figure 8 shows the learning costs

for sense and enp, which is competitive with previous SORL

methods [15]. The other agents, mul scalar and add scalar,

also have similar learning costs (not shown). What is interest-

ing is that morl multi also has similar learning costs in spite

of having to learn three different greedy actor-critics within

the same training period as previous SORL methods. This is

primarily due to off-policy corrections in Algorithm 2 and

auto-regulation among the greedy agents in Algorithm 1.Thus,

our framework can learn to optimize between three objectives

successfully in dual-task EHWSNs, without a drastic increase

in learning costs.

VIII. CONCLUSION

Modern EHWSNs are complex SoCs that need to optimize

multiple objectives to maximize their utility and maintain

ENO. Traditional approaches cannot handle multiple objec-

tives and tradeoff between them at runtime. Our proposed

MORL framework can learn policies and perform tradeoffs

within feasible learning costs. Simulations on single-task

and dual-task EHWSNs show that our framework results in

near-optimal policies that can dynamically tradeoff between

objectives at runtime. By compromising between compute-

intensive MORL methods and elitist MC/EA methods, our pro-

posed MORL algorithms are a feasible solution for resource-

constrained EHWSN.
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