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Abstract—This document introduces FPGAs (Field 

Programmable Gate Arrays) and highlights their parallel 

processing capability. FPGAs are reprogrammable hardware 

chips for implementation of digital logic. Their reconfigurability 

is attributable to the presence of configurable logic slices and 

interconnects. The possibility of hardware configuration in 

FPGAs allows the designer to design multiple modules that run 

parallel and independently to each other. This paper discusses 

how FPGAs offer true hardware parallelism and deliberates on 

some areas which benefit from FPGAs’ parallel processing such 

as DSP (Digital Signal Processing), Data Acquisition and 

Processing, Text Parsing and Image/Video Processing. To 

demonstrate the possibility and the consequent advantages of 

parallel processing, a matrix multiplier was designed for a 

Spartan-3E FPGA with the help of High Level Synthesis (HLS) 

tools. Two possible solutions, with and without parallel 

processing, were obtained which are briefly discussed here.  

 
Index Terms—FPGA, Parallel Processing, Spartan-3E FPGA, 

DSP, HLS. 

I. INTRODUCTION 

The sheer volume of information to be processed in today’s 

world has risen exponentially with time. This has led to the 

development of faster processor cores with higher clock 

speeds. Now the paradigm is shifting to multi-core processors. 

A good example of this would be Intel’s i3, i5 and i9 

processors with multiple cores on a single chip.  

Although parallel processing is possible using multiple 

cores, their cost and power consumption are major issues in 

their practical application. Achieving parallel processing using 

a single microprocessor with a single core is an avenue that 

has been extensively researched. Numerous pipelining 

algorithms have been developed to achieve the fastest 

throughput – however, the fact remains that a single processor 

can execute only one instruction at a time. 

In contrast, FPGAs (Field Programmable Gate Arrays) can 

offer true parallelism in processing. They can be configured to 

have multiple processors functioning in parallel.  

Another fundamental difference between FPGAs and 

microprocessor processing is in the approach to processing. 

Microprocessors are almost exclusively based on the Von 

Nuemann architecture or the Harvard architecture. Both these 

architectures have a common feature in that the processors 

have to fetch data and the instructions to process the data i.e. 

they use a stored program concept. However, FPGA 

processing is purely hardware based processing – there is no 

fetching of instructions required; the program description 

determines the configuration of the hardware itself i.e. the 

processing is implemented in hardware rather than software. 

 

A.  Introduction to FPGA 

FPGAs are configurable silicon chips that can be 

configured to mimic any type of digital circuitry. They consist 

of CLBs (Configurable Logic Blocks) and highly flexible 

programmable interconnects.  

The CLBs consist of LUTs (Look-Up Tables), wide 

multiplexers and storage elements (usually D flip-flops). The 

LUTs (usually with three to five inputs) can be configured to 

perform any Boolean function. The use of multiplexers allow 

for combination of LUTs to increase the input width of the 

CLB.  

The interconnections between different CLBs is 

accomplished using an interconnect matrix or a global routing 

matrix. These interconnect matrices are configurable and 

allows for high flexibility in the interconnection between 

different CLBs. 

FPGAs also come with configurable IOBs (Input Output 

Blocks) to comply with a large number of standards like 

LVTTL, LVCMOS, HSTL etc. 

Modern FPGAs have other silicon hardcores built in to 

facilitate better designs and higher speeds. For instance, the 

Spartan-6 FPGAs from Xilinx consist of DCM (Digital Clock 

Manager), block RAM, gigabit transceivers, and the 

DSP48A1 slice in addition to the CLBs and IOBs. It supports 

upto 147K logic cell density, 3.2 Gigabits/sec integrated serial 

transceivers. 

FPGAs are configured using HDL (Hardware Description 

Language) such as Verilog, VHDL or System Verilog. The 

HDL is synthesized and then implemented onto the FPGA 

using mapping and PAR (Place and Route) tools. 

Another method for generation of HDL codes is via HLS. 

The generation of synthesizable HDL codes from high level 

languages such as C, C++ or System C is termed as HLS. 

Xilinx Vivado HLS 2013.4 is one such HLS tool. Xilinx 

Vivado HLS 2013.4 is used to convert high level descriptions 

of a design into Register Transfer Language (RTL) netlist 

which is then implemented on the FPGA. 

The use of HLS for generation of synthesizable HDL 

allows the designer to create multiple ‘solutions’ for a defined 

design objective, allowing the designer to explore design 

trade-offs and arrive at an optimal solution.   

II. PARALLEL  PROCESSING USING FPGAS 



FPGAs exhibit true parallel process execution. Each 

independent task is assigned to a different area of the chip. 

Each task performs autonomously without having to share 

resources with other simultaneous processes. Adding more 

parallel threads will not affect any of the existing processes 

either. The amount of parallelism in FPGA is limited only by 

the amount of physical chip space available. 

A. Hardware Flexibility 

Implementing designs in FPGAs means that the designer is 

designing the hardware using FPGA. They are not restricted to 

any predetermined hardware architecture or function. An 

FPGA allows the designer to program product features and 

functions, adapt to new standards, and reconfigure hardware 

for specific applications even after the product has been 

installed in the field – hence the name “field-

programmable”.[1] 

Since FPGA configuration implies actual hardware 

configuration, the designer has many options on which to 

customize the design. The I/O pins can be configured 

according to the designer’s convenience. Even the data bus 

width can be made arbitrarily wide depending upon the design. 

The FPGA Architecture provides the flexibility to create a 

massive array of application specific ALUs that enable both 

instruction and data level parallelism. Because data flows 

between operators, there are no inefficiencies like processor 

cache misses; FPGA data can be streamed between operators. 

The parallelism offered by FPGA architecture can be easily 

seen in HPC (High Performance Computing) – relevant 

parameters like  

 Internal ALU bandwidth is in the order of terabytes/sec 

(TB/sec) 

 Integer operation throughputs are in the order of Tera-

operations/sec (TOPS) 

 Floating point operations are in the order of 

gigaflops/sec (GFLOPS) [2]. 

B. FPGAs as Co-processors 

Instead of completely replacing CPUs, FPGAs can also 

play the role of co-processors. The use of such co-processors 

can unload some of the burden from CPUs for specific 

processing tasks. FPGAs are attractive co-processors because 

of the potential for tailored design and parallelism. FPGAs are 

also very interesting in regard to power consumption as they 

consume significantly less power, yet have performance 

comparable to conventional CPUs. This makes FPGAs good 

candidates for implementing cores in multi-core systems 

where certain data processing tasks can be off loaded from the 

main CPU [3]. 

C. Design Trade-offs 

FPGAs have uncommitted logic resources along with 

others that can help developers directly steer module-to-

module hardware infrastructure and trade off resources and 

performance by selecting the appropriate level of parallelism 

to implement an algorithm [4]. One can trade between speed 

and power consumption when designing with FPGAs. This 

makes it very popular in low power applications. 

D. System Latency 

 

Use of FPGAs also decreases a lot of latency time that is 

inevitable in processors. Significant amount of time is 

consumed when moving data between memories (like RAM 

and cache) and between ALU and memory. The cycles used in 

processors for data transfer between memory elements and 

ALU can be utilized effectively for processing in FPGAs. 

FPGAs can bypass a lot of other system latency. With a 

conventional processor, a system might be receiving data via a 

TCP socket onto an Ethernet chip, but that then has to go 

through a MAC layer, then a North Bridge chip, then onto the 

processor main bus, then an interrupt has be flagged, then all 

the data has to be transferred into the user space. All these 

things can of course be done very quickly but there are 

nonetheless a lot of steps to go through that do not apply to 

FPGAs [5]. 

III. APPLICATION OF FPGA PARALLEL PROCESSING 

FPGAs were originally used as glue logic but now their 

functionality and application has taken giant strides in the 

recent years. Their parallel processing capability has made 

them a popular tool in various areas. 

A. Digital Signal Processing(DSP) 

DSP requires massive amounts of parallel computation. 

This makes it very suitable for its implementation in FPGAs. 

Now-a-days, most FPGAs have built in DSP slices to assist in 

DSP. Some of the major areas where DSP can be 

implemented using parallel processing of FPGAs are 

discussed as follows. 

1)  MAC (Multiply and Accumulate) Blocks:  DSP use 

MAC blocks extensively. A DSP expression usually is of the 

form: 

Y[k] = ∑c[k].x[k] 

 

The multiplication of a coefficient c[n] with an input 

sequence x[n] is accomplished by using a shift-and-add 

approach in microprocessors. An FPGA outperforms a DSP 

processor by performing multiplication and accumulation 

steps in parallel. Even more optimized implementation of 

MAC can be achieved by using distributed arithmetic [6] – [8] 

and FPGAs. 

2)  FFT:  FFT that is accomplished using butterfly 

techniques benefit from using parallel processing. The various 

butterfly stages can be computed in parallel to get to the result 

faster. 

High-speed FFT cores have become an essential requirement 

for real time spectral monitoring and analysis. As the 

monitoring bandwidth grows with higher frequency spectrums, 

systems must be designed to convert time domain signal to 

frequency domain faster – necessitating faster FFT operations. 

In most modern systems, parallel FFTs run parallel at 

extremely high sample rates (12.5 Gigasamples/sec) taking 

advantage of wideband A/D converters. 



3)  Digital Filters:  Digital filtering requires significant 

amounts of multiply/accumulate operations. FIR and IIR 

filters use shift registers and tap delays that can be easily 

realized using the resources in FPGAs. Direct Form I and 

Direct Form II realization of IIR filters benefit immensely 

from parallel processing capability of FPGAs. 

B. Data Acquisition/Logging 

(DASs) Data Acquisition Systems consist of multiple 

inputs that need to be processed. A processor is unable to 

capture the data from various inputs and sensors 

simultaneously. It uses pipelining and memory buffering to 

achieve this. In addition, each different input will require a 

different type of processing – hence the processor will have to 

load new instructions for each sensor’s input data. 

Using FPGAs can overcome many of the shortcomings of 

using a single processor for DAS systems. The FPGA can be 

configured to have independent signal processing ALUs for 

each of the sensor inputs. In addition, the large number of pins 

available in an FPGA combined with its hardware 

configurability allows it to accept and process the signals from 

multiple sources simultaneously. 

C. Text Parsing 

The parallelism of FPGAs is perfectly suited for high speed 

text parsing where multiple newsfeed must be screened for a 

huge number of keywords.  

Using processors to achieve this would be quite inefficient 

and would require multiple processors. This would not only 

increase the cost of the system but also the power 

consumption. 

As the number of keywords to be identified increases, the 

processor performance degrades appreciably as compared to 

FPGAs. While precise figures vary with implementation, a 

CPU will take approximately 100 times longer than FPGAs to 

parse a text for fifty expressions. [5] 

D. Image/Video Processing 

Although the power of CPUs has increased, image and 

video processing still require algorithms that are accelerated 

by DSP, RISC and FPGAs. 

Image and video data occupies a large bandwidth and 

usually requires parallel processing. Dataflow architectures 

are usually based on this requirement and are designed so as 

to unburden the image and video processing load from the 

CPU. Processes such as filtering, colour correction and noise 

suppression are computationally intensive, requiring high 

bandwidth and parallel processing. This can be implemented 

using FPGAs as coprocessors to CPUs to deliver faster results 

and more efficient use of resources. 

 

IV. RESULTS 

To demonstrate the advantages of using FPGAs for parallel 

processing, a 32-bit signed integer 3x3 matrix multiplication 

was implemented in a Xilinx Spartan-3E XC3S5000E-FG320-

4 FPGA. 

Xilinx Vivado HLS 2013.4 was used to generate the RTL 

description followed by its synthesis. Two different solutions 

were generated for the possible synthesis and implementation 

of the design. In solution 1, no pipelining was implemented. 

The second solution, solution 2, used the pipeline directive to 

ensure maximum hardware parallelism during the 

implementation of the hardware. The synthesis estimates are 

illustrated in Tables I, II and III. 

It is very clear from the synthesis estimates that the latency 

of the multiplier has been reduced dramatically from 133 

clock cycles in the first solution to just nine clock cycles in the 

second solution (Table II). This has been achieved at the cost 

of more hardware. For instance, while only three multipliers 

are employed in the first solution, the second solution employs 

81 multipliers (Table III). 

In short, in Solution 2, the use of multiple multipliers and 

other associated hardware in parallel allowed for faster 

computation of results.  
 

TABLE I 

TIMING ESTIMATES 

 

Clock  Solution 1 Solution 2 

Default Target 20.00 ns 20.00 ns 

 Estimated 16.94 ns 16.94 ns 

   
TABLE II 

LATENCY ESTIMATES 

 

  Solution 1 Solution 2 

Latency Minimum 133 clock cycles 9 clock cycles 

 Maximum 133 clock cycles 9 clock cycles 

Interval Minimum 134 clock cycles 6 clock cycles 

 Maximum 134 clock cycles 6 clock cycles 

 

TABLE III 

RESOURCE UTILIZATION ESTIMATES 

 

 Solution 1 Solution 2 

18K Block RAM 0 0 

Flip Flops 155 1445 

LUTs 137 1638 

18x18 Multipliers 3 81 

 

V. CONCLUSION 

The use of FPGAs for implementing digital systems 

provides designers with a high degree of flexibility. A 

designer who implement designs in FPGAs has the advantage 

to reconfigure the hardware in order to trade between 

performance and resource utilization depending upon the 

design resources and constraints. Power consumption, 

processing speed and chip area can each be traded for another 

to come to an optimized solution. 

Computer architecture is changing towards heterogeneous 

multi-core systems to achieve computational parallelism on 



the massive amounts of input data. This is a challenge for both 

hardware and software designers. 

FPGAs have a considerable share of the silicon market and 

are finding more areas of applications every day. FPGAs will 

dominate a lot of the applications where application specific 

ALUs will be required. Their hardware configurability and 

parallel computational capability will play a critical role in the 

implementation of multi-core computational paradigm. 

FPGAs already have demonstrated their success in 

application specific processing systems owing to their 

parallelism and high speed computation. Although FPGAs 

may not replace CPUs completely, they will play a very 

important role as co-processors to increase the computational 

ability of processors. 
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