
Parallel Processing Using FPGAs
Shaswot Shresthamali

 Department of Electronics and Communication Engineering,

Sagarmatha Engineering College, Tribhuvan University

Sanepa, Lalitpur

shaswot@sagarmatha.edu.np

Abstract—This document introduces FPGAs (Field

Programmable Gate Arrays) and highlights their parallel

processing capability. FPGAs are reprogrammable hardware

chips for implementation of digital logic. Their reconfigurability

is attributable to the presence of configurable logic slices and

interconnects. The possibility of hardware configuration in

FPGAs allows the designer to design multiple modules that run

parallel and independently to each other. This paper discusses

how FPGAs offer true hardware parallelism and deliberates on

some areas which benefit from FPGAs’ parallel processing such

as DSP (Digital Signal Processing), Data Acquisition and

Processing, Text Parsing and Image/Video Processing. To

demonstrate the possibility and the consequent advantages of

parallel processing, a matrix multiplier was designed for a

Spartan-3E FPGA with the help of High Level Synthesis (HLS)

tools. Two possible solutions, with and without parallel

processing, were obtained which are briefly discussed here.

Index Terms—FPGA, Parallel Processing, Spartan-3E FPGA,

DSP, HLS.

I. INTRODUCTION

The sheer volume of information to be processed in today’s

world has risen exponentially with time. This has led to the

development of faster processor cores with higher clock

speeds. Now the paradigm is shifting to multi-core processors.

A good example of this would be Intel’s i3, i5 and i9

processors with multiple cores on a single chip.

Although parallel processing is possible using multiple

cores, their cost and power consumption are major issues in

their practical application. Achieving parallel processing using

a single microprocessor with a single core is an avenue that

has been extensively researched. Numerous pipelining

algorithms have been developed to achieve the fastest

throughput – however, the fact remains that a single processor

can execute only one instruction at a time.

In contrast, FPGAs (Field Programmable Gate Arrays) can

offer true parallelism in processing. They can be configured to

have multiple processors functioning in parallel.

Another fundamental difference between FPGAs and

microprocessor processing is in the approach to processing.

Microprocessors are almost exclusively based on the Von

Nuemann architecture or the Harvard architecture. Both these

architectures have a common feature in that the processors

have to fetch data and the instructions to process the data i.e.

they use a stored program concept. However, FPGA

processing is purely hardware based processing – there is no

fetching of instructions required; the program description

determines the configuration of the hardware itself i.e. the

processing is implemented in hardware rather than software.

A. Introduction to FPGA

FPGAs are configurable silicon chips that can be

configured to mimic any type of digital circuitry. They consist

of CLBs (Configurable Logic Blocks) and highly flexible

programmable interconnects.

The CLBs consist of LUTs (Look-Up Tables), wide

multiplexers and storage elements (usually D flip-flops). The

LUTs (usually with three to five inputs) can be configured to

perform any Boolean function. The use of multiplexers allow

for combination of LUTs to increase the input width of the

CLB.

The interconnections between different CLBs is

accomplished using an interconnect matrix or a global routing

matrix. These interconnect matrices are configurable and

allows for high flexibility in the interconnection between

different CLBs.

FPGAs also come with configurable IOBs (Input Output

Blocks) to comply with a large number of standards like

LVTTL, LVCMOS, HSTL etc.

Modern FPGAs have other silicon hardcores built in to

facilitate better designs and higher speeds. For instance, the

Spartan-6 FPGAs from Xilinx consist of DCM (Digital Clock

Manager), block RAM, gigabit transceivers, and the

DSP48A1 slice in addition to the CLBs and IOBs. It supports

upto 147K logic cell density, 3.2 Gigabits/sec integrated serial

transceivers.

FPGAs are configured using HDL (Hardware Description

Language) such as Verilog, VHDL or System Verilog. The

HDL is synthesized and then implemented onto the FPGA

using mapping and PAR (Place and Route) tools.

Another method for generation of HDL codes is via HLS.

The generation of synthesizable HDL codes from high level

languages such as C, C++ or System C is termed as HLS.

Xilinx Vivado HLS 2013.4 is one such HLS tool. Xilinx

Vivado HLS 2013.4 is used to convert high level descriptions

of a design into Register Transfer Language (RTL) netlist

which is then implemented on the FPGA.

The use of HLS for generation of synthesizable HDL

allows the designer to create multiple ‘solutions’ for a defined

design objective, allowing the designer to explore design

trade-offs and arrive at an optimal solution.

II. PARALLEL PROCESSING USING FPGAS

FPGAs exhibit true parallel process execution. Each

independent task is assigned to a different area of the chip.

Each task performs autonomously without having to share

resources with other simultaneous processes. Adding more

parallel threads will not affect any of the existing processes

either. The amount of parallelism in FPGA is limited only by

the amount of physical chip space available.

A. Hardware Flexibility

Implementing designs in FPGAs means that the designer is

designing the hardware using FPGA. They are not restricted to

any predetermined hardware architecture or function. An

FPGA allows the designer to program product features and

functions, adapt to new standards, and reconfigure hardware

for specific applications even after the product has been

installed in the field – hence the name “field-

programmable”.[1]

Since FPGA configuration implies actual hardware

configuration, the designer has many options on which to

customize the design. The I/O pins can be configured

according to the designer’s convenience. Even the data bus

width can be made arbitrarily wide depending upon the design.

The FPGA Architecture provides the flexibility to create a

massive array of application specific ALUs that enable both

instruction and data level parallelism. Because data flows

between operators, there are no inefficiencies like processor

cache misses; FPGA data can be streamed between operators.

The parallelism offered by FPGA architecture can be easily

seen in HPC (High Performance Computing) – relevant

parameters like

 Internal ALU bandwidth is in the order of terabytes/sec

(TB/sec)

 Integer operation throughputs are in the order of Tera-

operations/sec (TOPS)

 Floating point operations are in the order of

gigaflops/sec (GFLOPS) [2].

B. FPGAs as Co-processors

Instead of completely replacing CPUs, FPGAs can also

play the role of co-processors. The use of such co-processors

can unload some of the burden from CPUs for specific

processing tasks. FPGAs are attractive co-processors because

of the potential for tailored design and parallelism. FPGAs are

also very interesting in regard to power consumption as they

consume significantly less power, yet have performance

comparable to conventional CPUs. This makes FPGAs good

candidates for implementing cores in multi-core systems

where certain data processing tasks can be off loaded from the

main CPU [3].

C. Design Trade-offs

FPGAs have uncommitted logic resources along with

others that can help developers directly steer module-to-

module hardware infrastructure and trade off resources and

performance by selecting the appropriate level of parallelism

to implement an algorithm [4]. One can trade between speed

and power consumption when designing with FPGAs. This

makes it very popular in low power applications.

D. System Latency

Use of FPGAs also decreases a lot of latency time that is

inevitable in processors. Significant amount of time is

consumed when moving data between memories (like RAM

and cache) and between ALU and memory. The cycles used in

processors for data transfer between memory elements and

ALU can be utilized effectively for processing in FPGAs.

FPGAs can bypass a lot of other system latency. With a

conventional processor, a system might be receiving data via a

TCP socket onto an Ethernet chip, but that then has to go

through a MAC layer, then a North Bridge chip, then onto the

processor main bus, then an interrupt has be flagged, then all

the data has to be transferred into the user space. All these

things can of course be done very quickly but there are

nonetheless a lot of steps to go through that do not apply to

FPGAs [5].

III. APPLICATION OF FPGA PARALLEL PROCESSING

FPGAs were originally used as glue logic but now their

functionality and application has taken giant strides in the

recent years. Their parallel processing capability has made

them a popular tool in various areas.

A. Digital Signal Processing(DSP)

DSP requires massive amounts of parallel computation.

This makes it very suitable for its implementation in FPGAs.

Now-a-days, most FPGAs have built in DSP slices to assist in

DSP. Some of the major areas where DSP can be

implemented using parallel processing of FPGAs are

discussed as follows.

1) MAC (Multiply and Accumulate) Blocks: DSP use

MAC blocks extensively. A DSP expression usually is of the

form:

Y[k] = ∑c[k].x[k]

The multiplication of a coefficient c[n] with an input

sequence x[n] is accomplished by using a shift-and-add

approach in microprocessors. An FPGA outperforms a DSP

processor by performing multiplication and accumulation

steps in parallel. Even more optimized implementation of

MAC can be achieved by using distributed arithmetic [6] – [8]

and FPGAs.

2) FFT: FFT that is accomplished using butterfly

techniques benefit from using parallel processing. The various

butterfly stages can be computed in parallel to get to the result

faster.

High-speed FFT cores have become an essential requirement

for real time spectral monitoring and analysis. As the

monitoring bandwidth grows with higher frequency spectrums,

systems must be designed to convert time domain signal to

frequency domain faster – necessitating faster FFT operations.

In most modern systems, parallel FFTs run parallel at

extremely high sample rates (12.5 Gigasamples/sec) taking

advantage of wideband A/D converters.

3) Digital Filters: Digital filtering requires significant

amounts of multiply/accumulate operations. FIR and IIR

filters use shift registers and tap delays that can be easily

realized using the resources in FPGAs. Direct Form I and

Direct Form II realization of IIR filters benefit immensely

from parallel processing capability of FPGAs.

B. Data Acquisition/Logging

(DASs) Data Acquisition Systems consist of multiple

inputs that need to be processed. A processor is unable to

capture the data from various inputs and sensors

simultaneously. It uses pipelining and memory buffering to

achieve this. In addition, each different input will require a

different type of processing – hence the processor will have to

load new instructions for each sensor’s input data.

Using FPGAs can overcome many of the shortcomings of

using a single processor for DAS systems. The FPGA can be

configured to have independent signal processing ALUs for

each of the sensor inputs. In addition, the large number of pins

available in an FPGA combined with its hardware

configurability allows it to accept and process the signals from

multiple sources simultaneously.

C. Text Parsing

The parallelism of FPGAs is perfectly suited for high speed

text parsing where multiple newsfeed must be screened for a

huge number of keywords.

Using processors to achieve this would be quite inefficient

and would require multiple processors. This would not only

increase the cost of the system but also the power

consumption.

As the number of keywords to be identified increases, the

processor performance degrades appreciably as compared to

FPGAs. While precise figures vary with implementation, a

CPU will take approximately 100 times longer than FPGAs to

parse a text for fifty expressions. [5]

D. Image/Video Processing

Although the power of CPUs has increased, image and

video processing still require algorithms that are accelerated

by DSP, RISC and FPGAs.

Image and video data occupies a large bandwidth and

usually requires parallel processing. Dataflow architectures

are usually based on this requirement and are designed so as

to unburden the image and video processing load from the

CPU. Processes such as filtering, colour correction and noise

suppression are computationally intensive, requiring high

bandwidth and parallel processing. This can be implemented

using FPGAs as coprocessors to CPUs to deliver faster results

and more efficient use of resources.

IV. RESULTS

To demonstrate the advantages of using FPGAs for parallel

processing, a 32-bit signed integer 3x3 matrix multiplication

was implemented in a Xilinx Spartan-3E XC3S5000E-FG320-

4 FPGA.

Xilinx Vivado HLS 2013.4 was used to generate the RTL

description followed by its synthesis. Two different solutions

were generated for the possible synthesis and implementation

of the design. In solution 1, no pipelining was implemented.

The second solution, solution 2, used the pipeline directive to

ensure maximum hardware parallelism during the

implementation of the hardware. The synthesis estimates are

illustrated in Tables I, II and III.

It is very clear from the synthesis estimates that the latency

of the multiplier has been reduced dramatically from 133

clock cycles in the first solution to just nine clock cycles in the

second solution (Table II). This has been achieved at the cost

of more hardware. For instance, while only three multipliers

are employed in the first solution, the second solution employs

81 multipliers (Table III).

In short, in Solution 2, the use of multiple multipliers and

other associated hardware in parallel allowed for faster

computation of results.

TABLE I

TIMING ESTIMATES

Clock Solution 1 Solution 2

Default Target 20.00 ns 20.00 ns

 Estimated 16.94 ns 16.94 ns

TABLE II

LATENCY ESTIMATES

 Solution 1 Solution 2

Latency Minimum 133 clock cycles 9 clock cycles

 Maximum 133 clock cycles 9 clock cycles

Interval Minimum 134 clock cycles 6 clock cycles

 Maximum 134 clock cycles 6 clock cycles

TABLE III

RESOURCE UTILIZATION ESTIMATES

 Solution 1 Solution 2

18K Block RAM 0 0

Flip Flops 155 1445

LUTs 137 1638

18x18 Multipliers 3 81

V. CONCLUSION

The use of FPGAs for implementing digital systems

provides designers with a high degree of flexibility. A

designer who implement designs in FPGAs has the advantage

to reconfigure the hardware in order to trade between

performance and resource utilization depending upon the

design resources and constraints. Power consumption,

processing speed and chip area can each be traded for another

to come to an optimized solution.

Computer architecture is changing towards heterogeneous

multi-core systems to achieve computational parallelism on

the massive amounts of input data. This is a challenge for both

hardware and software designers.

FPGAs have a considerable share of the silicon market and

are finding more areas of applications every day. FPGAs will

dominate a lot of the applications where application specific

ALUs will be required. Their hardware configurability and

parallel computational capability will play a critical role in the

implementation of multi-core computational paradigm.

FPGAs already have demonstrated their success in

application specific processing systems owing to their

parallelism and high speed computation. Although FPGAs

may not replace CPUs completely, they will play a very

important role as co-processors to increase the computational

ability of processors.

ACKNOWLEDGMENT

I wish to acknowledge the Department of Electronics

Engineering at Sagarmatha Engineering College, Sanepa for

providing me with the resources to help me prepare this paper.

I am grateful towards Mr. Deepesh Man Shakya for his

advice, support and encouragement.

I also wish to thank Mr. Dil Bahadur Chettri for his

valuable comments.

REFERENCES

[1] Altera Website on FPGA. [Online]. Available:
http://www.altera.com/products/fpga.html

[2] Prasanna Sundararajan, High Performance Computing Using FPGAs.

[3] Rene Mueller, Jens Teubner and Gustavo Alonso, Data Processing on

FPGAs.

[4] Shuai Chey, Jie Liz, Jeremy W. Sheaffery, Kevin Skadrony and John
Lachz, Accelerating Computer-Intensive Applications with GPUs and

FPGAs

[5] Automated Trader Website. [Online]. Available:
http://www.automatedtrader.net/articles/spotlight/514/fpgas-_-parallel-

perfection.html

[6] G.R. Goslin, A Guide to Using FPGAs for Application-Specific Digital
Signal Processing. Available: www.xilinx.com/appnotes.dspguide.pdf

[7] L. Minster, The Role of Distributed Arithmetic in FPGA-based signal

processing, Available: http://home.att.net/~pcuenin/theory1.pdf
[8] B. New, A distributed arithmetic approach by designing scalable DSP

chips, EDN, Aug. 17, 1995.

Shaswot Shresthamali was born in

Kathmandu, Nepal, in 1989. He

received his B.E. degree in electronics

and communication engineering from

Tribhuvan University, Nepal in 2012.

Following his graduation, he joined the

Department of Electronics and

Communication Engineering in

Sagarmatha Engineering College as an Assistant Lecturer. In

2013, he started ‘Xilinx Research Laboratory’ in Sagarmatha

Engineering College of which he is also the Lab Coordinator.

He is presently an Assistant Professor and the Research

Coordinator of Sagarmatha Engineering College.

His current research interests include Audio Digital Signal

Processing, FPGAs, Programmable Logic and VLSI Design.

He is also a member of IEEE Solid State Circuits Society as

well as the IEEE Robotics and Automation Society.

