
Citation: Shresthamali, S.; Kondo, M.;

Nakamura, H. Multi-Objective

Resource Scheduling for IoT Systems

Using Reinforcement Learning. J.

Low Power Electron. Appl. 2022, 12, 53.

https://doi.org/10.3390/jlpea

12040053

Academic Editors: Lan-Da Van,

Khanh N. Dang and Kun-Chih Chen

Received: 30 August 2022

Accepted: 29 September 2022

Published: 8 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

Multi-Objective Resource Scheduling for IoT Systems Using
Reinforcement Learning †

Shaswot Shresthamali 1,* , Masaaki Kondo 1 and Hiroshi Nakamura 2

1 Department of Information and Computer Science, Faculty of Science and Technology, Keio University,
Kanagawa 223-8522, Japan

2 Department of Information Physics and Computing, Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo 113-8656, Japan

* Correspondence: shaswot@acsl.ics.keio.ac.jp
† This paper is an extended version of our paper published in 2021 IEEE 14th International Symposium on

Embedded Multicore/Many-Core Systems-on-Chip (MCSoC), Singapore, 20–23 December 2021.

Abstract: IoT embedded systems have multiple objectives that need to be maximized simultaneously.
These objectives conflict with each other due to limited resources and tradeoffs that need to be
made. This requires multi-objective optimization (MOO) and multiple Pareto-optimal solutions are
possible. In such a case, tradeoffs are made w.r.t. a user-defined preference. This work presents a
general Multi-objective Reinforcement Learning (MORL) framework for MOO of IoT embedded
systems. This framework comprises a general Multi-objective Markov Decision Process (MOMDP)
formulation and two novel low-compute MORL algorithms. The algorithms learn policies to tradeoff
between multiple objectives using a single preference parameter. We take the energy scheduling
problem in general Energy Harvesting Wireless Sensor Nodes (EHWSNs) as a case example in which
a sensor node is required to maximize its sensing rate, and transmission performance as well as
ensure long-term uninterrupted operation within a very tight energy budget. We simulate single-task
and dual-task EHWSN systems to evaluate our framework. The results demonstrate that our MORL
algorithms can learn better policies at lower learning costs and successfully tradeoff between multiple
objectives at runtime.

Keywords: multi objective optimization; multi-objective reinforcement learning; wireless sensors;
energy harvesting

1. Introduction

The deployment of Internet of Things (IoT) devices has increased dramatically in
these recent years for a wide variety of applications. A large fraction of these devices are
low-power embedded edge devices. In addition to their primary tasks (such as sensing,
control, and edge-processing), these devices also need to coordinate auxiliary tasks such as
communication, pre-processing, and energy management [1,2]. These embedded systems
need to maximize multiple objectives which conflict with each other for limited resources
such as energy, bandwidth, and computation time. For instance, in many cases, energy
is usually in short supply and needs to be scheduled among many tasks to satisfy differ-
ent objectives. Take for example a solar-powered temperature sensor that encodes and
compresses the sensed data before transmitting it to a server. The nodes need to decide
on whether to spend their limited energy on increasing the sensing rate (for more accu-
rate and precise readings) or the transmission power (to compensate for a noisy channel
and meet latency requirements) or its CPU frequency (for faster and more efficient data
compression). These are multiple task objectives that need to be optimized simultaneously.
However, all these tasks share a common limited energy pool which gives rise to resource
conflicts. Thus, the user needs to make tradeoffs w.r.t. a preference or priority.This requires
Multi-objective Optimization (MOO). Unlike single objective optimization problems, it is

J. Low Power Electron. Appl. 2022, 12, 53. https://doi.org/10.3390/jlpea12040053 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12040053
https://doi.org/10.3390/jlpea12040053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0001-8965-1018
https://doi.org/10.3390/jlpea12040053
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12040053?type=check_update&version=3

J. Low Power Electron. Appl. 2022, 12, 53 2 of 33

not possible to arrive at a globally optimal solution. Instead, there exists multiple optimal
solutions with different tradeoffs and the most appropriate one is chosen depending on the
user’s preference.

Heuristic MOO solutions (e.g., Evolutionary Algorithms (EA), Particle Swarm Op-
timization (PSO)) are not very suitable MOOs in embedded devices. This is because
optimization problems for embedded systems require dynamic time-variant objective func-
tions, i.e., the problem parameters, constraints, user preferences, and the set of optimal
solutions change at each timestep. For example, the solar-powered node mentioned earlier
may have to switch to a different energy budgeting policy whenever the energy availability
varies. In such cases, traditional MOO energy scheduling methods need to recompute their
solutions as soon as the problem parameters change. This is not practical because this
requires a lot of computation, and the time required to optimize and converge to a solution
may be insufficient before the next change.

An alternative MOO method is to use Multi-objective Reinforcement Learning (MORL) [3].
Reinforcement Learning (RL) methods [4] are preferable over heuristics because a node
can learn policies for many diverse application scenarios, with minimal human supervi-
sion, with a common learning framework. An RL agent (the IoT node in this case) uses
trial-and-error to explore various optimization policies through direct interaction with the
environment. The agent learns progressively better policies using a reward signal as feed-
back. Single objective RL (SORL) solutions are relatively straightforward and have been
researched extensively for ENO in EHWSNs [5–11]. MOO problems are more complex and
naive MORL methods have very high computation requirements [12,13] and limited appli-
cation scope (e.g., discrete state-action spaces [14]) making them unsuitable for embedded
systems. Furthermore, both SORL and MORL methods reliably converge to stable solutions
only under very idealized conditions. This usually means (i) the interacting environment is
a reliably stationary process; (ii) the feedback can be expressed as an easy-to-define reward
in a timely manner and (iii) mistakes made during the training phase (exploration) do not
have drastic real-world consequences. Video games and board games are good examples
of such ideal environments where RL has been very successful and achieved superhuman
performance [15,16].

Unfortunately, embedded IoT systems do not have such ideal conditions for learning.
They interact in the real environment which is highly unreliable and unpredictable with
many one-off events, and the optimality of a policy can be judged only in the long run
so the feedback is very delayed and noisy. Furthermore, the nodes have to learn stable
convergent policies quickly while avoiding catastrophic mistakes which have real-world
consequences as much as possible (e.g., node shutdowns due to energy depletion). Thus,
using RL for IoT systems requires two major considerations:

• The RL Markov Decision Process (MDP) must be carefully defined such that it defines
the optimization problem accurately and sufficiently, and

• RL algorithms should be able to learn stable policies within reasonable computational
costs using the MDP.

With this in mind, we present a general MORL framework for MOO in IoT embedded
systems. For the sake of example, we focus on the energy scheduling problem in Energy
Harvesting Wireless Sensor Nodes (EHWSNs). This is because MOO for long-term energy-
neutral operation in EHWSNs captures some of the most challenging and interesting aspects
of using MORL in IoT embedded systems. EHWSNs are sensor nodes that harvest energy
from the environment for long-term sensing applications. EHWSNs have had enormous
success in a variety of applications such as animal monitoring, personal health care, disaster
prevention, etc. [17]. This is because they have an inexhaustible energy source coupled
with wireless connectivity which makes them capable of perpetual autonomous operation.
However, the uninterrupted perpetual operation requires judicious management of its
limited energy resources. This is referred to as Energy Neutral Operation (ENO) [18]. ENO
requires the average consumption of energy to be equal to the average harvested supply. It

J. Low Power Electron. Appl. 2022, 12, 53 3 of 33

should also satisfy causality constraints i.e., total consumed energy is always less than or
equal to total harvested energy.

ENO for EHWSNs using MORL is a difficult problem because the nodes have very
tight energy budgets due to limited battery size and a highly unpredictable and variable
ambient energy source. It is necessary for these nodes to intelligently allocate their energy
to multiple tasks while remaining energy-neutral (Figure 1). Furthermore, ENO is difficult
to express in terms of a reward signal and it requires very long-term planning for energy
optimization. It is not clear how the problem should be defined as an MDP, i.e., how to
define the states, actions, and rewards; and what RL algorithms are suitable to learn policies
that can easily tradeoff over the space of user preferences.

Figure 1. A multi-task EHWSN has to wisely determine its gross energy consumption at each time
step so as to remain energy-neutral. Furthermore, it has to proportion the energy among different
tasks to maximize node utility.

In this work, we implement our proposed MORL framework for EHWSNs and develop
MORL methods to derive solutions that

• ensure that the node does not violate energy neutrality in the long-term by regulating
the gross node energy consumption

• proportion of the budgeted energy between different tasks.
• dynamically tradeoff between maximization of different objectives w.r.t. user-defined

priorities.
• achieve all of this using much fewer computational requirements than existing methods.

We use a general EHWSN model described in [19], and:

• develop a suitable MDP for both SORL and MORL implementations. Furthermore, we
perform comprehensive experiments to analyze how our proposed MDP overcomes
the limitations of traditional definitions to achieve near-optimal solutions.

• analyze the effect that different reward incentives and environmental factors have on
the learning process as well as the resultant policies.

• demonstrate that our proposed algorithms can overcome the limitation of traditional
MORL methods for ENO and learn better policies at lower costs.

We organize this work as follows. In Section 2, we briefly discuss previous research in
the area and its limitations. We describe the general EHWSN system model in Section 3 for
which we develop our MORL framework. We give a brief theoretical background for ENO
and RL in Section 4. In Section 5, we describe the MDP and our proposed algorithms that
constitute the MORL framework. The experimental setup is explained in Section 6. We then
simulate single-task and dual-task EHWSNs extensively using our proposed framework.
We give a comprehensive analysis of our results in Section 7 our conclusions in Section 8.

J. Low Power Electron. Appl. 2022, 12, 53 4 of 33

2. Related Work
2.1. Analytical Methods for ENO

Historically, ENO of EHWSNs maximized a single objective using analytical methods.
They focused on maximization of either the gross device energy consumption [18,20] or the
communication performance [21,22] using linear programming [18], non-linear program-
ming [23,24], search methods [25], control systems [20], dynamic programming [26,27]
among other methods. While these approaches had comprehensive problem statements
with formal proofs, they were very application-specific and required significant hand-
tuning as well as non-causal information. We base our work on the mathematical founda-
tion and the ENO goals in [18]. The authors provide a linear programming optimization
approach that makes use of non-causal environmental data. They estimate the anticipated
energy output and choose the duty cycle accordingly. They cater to battery inefficiencies
and permit duty cycle adjustments to account for any variations in anticipated and actual
harvesting circumstances. However, the efficacy of this method is highly dependent on the
prediction mechanism and historical data. A non-causal solution proposed in [20] specified
a battery-centric objective function. They restate ENO as a control system problem that
minimizes the deviations in the battery level and achieves energy neutrality by using a
linear quadratic tracker. The control system is reactive and somewhat adaptive to solar
energy fluctuations. However, its stability requires careful calibration of hyperparameters
depending upon the working environment. Similar control system solutions are also pre-
sented in [28,29]. Our RL-based solution relies very little on the prediction mechanism and
any hyperparameter tuning required is a one-time effort. It therefore can be applied across
many different application domains with little to no change.

In [29], the authors extend the problem statement by incorporating the time-varying
utility of the data gathered by the sensor node. They argue that the sensing rate should
vary depending on the utility of the sensed data as perceived by the user. They take the
example of a soil moisture sensor system that exploits the prior knowledge of the seasonal
cycles of rainfall. In this scenario, the utility of sensed data is low when there is no rainfall.
Therefore, the authors propose a heuristic solution that conserves energy by reducing the
duty cycle when there is little rainfall (low data utility) and increasing the duty cycle when
there is rain (high data utility). Although data-utility is an important parameter to consider
during energy scheduling, we do not always know how the data utility varies. This work
assumes prior knowledge of this variation. Our proposed solution on the other hand does
not require any prior information and optimizes the energy policy even if the data utility
may vary unexpectedly.

2.2. Single Objective RL Methods for ENO

Analytical methods are unscalable and non-adaptive solutions that require significant
design bias. RL methods emerged as an alternative on account of its common algorithmic
paradigm to learn adaptive policies that could be applied to a wide variety of applications
(i.e., scalable solutions). Early applications of RL in EHWSNs concentrated on optimizing
simple communication policies [30–35] under the assumption that communication tasks
consume the majority of the energy. These methods were superior to analytical methods
but required complicated hand-crafted definitions of the states, actions, and reward func-
tions. Since EHWSNs interact with the real world (i.e., an open system), it is very difficult
to define the states and actions for an RL MDP that can sufficiently capture the environ-
ment dynamics without making the RL problem too complex to solve. More importantly,
the ENO reward feedback is very long-term and delayed and so it is difficult to define a
reward function for convergent, stable, and robust RL solutions. Non-optimal definitions
result in increased learning costs for the nodes which translate to increased learning time,
computation requirements, and “catastrophic mistakes” (unsafe exploration actions) made
during learning.

Solutions presented in [26,36] use specialized reward functions that are difficult to de-
sign. They may also sometimes lead to unexpected behavior due to reward hacking [37–39].

J. Low Power Electron. Appl. 2022, 12, 53 5 of 33

In our previous paper [9], we devised a simpler, general reward function capable of learn-
ing adaptive policies using tabular RL. The paper also demonstrated the adaptivity of
RL algorithms to changes in climate, device parameters, and battery degradation. Other
similar research related to RL for ENO include [40–42].

2.3. Multi-Objective Optimization Methods

Most research related to ENO of EHWSNs (both analytical and RL-based) approaches
usually assume maximization of some single proxy objective such as duty cycle/sampling
rate [7–9,40,42–44] or communication-based metric such as maximizing throughput/bitrate
and minimizing packet loss/latency [5,6,45–49]. However, realistic implementations usu-
ally require optimizing over multiple objectives. There has not been enough research on
energy scheduling among multiple tasks w.r.t. different objectives in EHWSNs. This is very
important, especially for modern resource-constrained sensor nodes.

It is still not very clear what is the best way to learn policies using multiple sources of
reward signals. One common approach is to employ scalarization techniques to transform
the multi-objective problem statement into a single-objective one, and then apply conven-
tional RL algorithms to solve it. Scalarization consolidates the multiple rewards by some
function to a single value [7,50–52].

One scalarization technique is to multiply the rewards together and scale the product
as in [7,50,52]. In such a case, it is not very clear what objective is being emphasized.
These methods do not allow for the optimization of any one specific preference; instead,
they learn an “average” policy across the space of preferences. Another scalarization
approach is to multiply the rewards by different weights and sum them together [51].
This allows the user to specify which rewards the policy should emphasize i.e., tradeoff
between different maximization objectives. However, this requires the relative weights
of the different rewards to be known before training. The learning process would have
to be repeated separately for different weight configurations. Consequently, the user has
to store a different policy for each unique preference which is unscalable and resource
intensive. Ideally, we would like an RL method that can trade off between the maximization
of different objectives during runtime (after the node has been trained and deployed). Thus
reward scalarization methods have significant drawbacks that hinder their use for MORL
in EHWSNs. This is explored in more detail in [3,52].

Another method to learn from multiple reward signals would be to integrate them
into the RL MDP as a reward vector. Such MORL methods are generally available as single-
policy methods and multi-policy methods. Interested readers can find a good overview
of general MORL methods in [53]. With single policy techniques, the agent learns policies
for multiple conflicting objectives whose preferences are not known a priori. However,
it is difficult for a single model to learn the best policies for various preference scenarios.
These methods generally involve learning an action-value function that takes into account
the relative emphasis among the objectives [14,54,55]. For e.g., in [14], the authors modify
the Bellman equation to learn a single parametric representation for optimal policies over
the space of all possible preferences. They evaluate their method for video game domain
problems. A limitation of this work is that the proposed MDP and the corresponding multi-
objective Bellman equation are applicable only for discrete action spaces where performing
an argmax search over the Q-values is feasible. This does not hold for continuous action
spaces. We would like a general MORL method that accommodates both continuous states
and action spaces. Multi-policy methods learn a set of policies in order to approximate
the Pareto-frontier [12,13,56–58]. The computed policies encompass the entire space of
possible preferences. These methods require considerable computation resources and have
scalability issues because the learned policies can grow significantly with the domain size.
For example, in [58], the authors propose to decompose a MOO problem into several
simpler single-objective problems and solve for each Pareto solution using DRL. They then
propose to generate the Pareto-frontier by combining the different Pareto solutions. Since
this is a computationally expensive process, they propose to reuse weights of neighboring

J. Low Power Electron. Appl. 2022, 12, 53 6 of 33

sub-solutions to accelerate the convergence of each of the Pareto solutions. Furthermore,
they argue that DRL has good generalization properties and can be extended to more
complex optimization with no training. This work has a similar approach to MOO as our
method in that it interpolates between different Pareto solutions to find a locally optimal
one. However, the method in [58] is quite difficult to implement in IoT embedded devices
because it employs computationally intensive techniques such as attention mechanism and
recurrent NN in addition to the actor-critic model. Furthermore, due to the time-varying
objective functions in embedded systems, it would be very difficult to compute the solutions
from all the sub-models at every timestep. Our method sidesteps this issue by computing
only the greediest Pareto solutions and interpolating between them. While this sacrifices
some optimality, our method is less compute-intensive.

Contemporary MORL methods are insufficient to solve the ENO problem for MDPs
due to a limited MDP and high computation requirements. We, therefore, use our MORL
framework to solve the energy scheduling issue for EHWSNs in this work. Our system
uses a standard Deep Deterministic Policy Gradient (DDPG) algorithm [59]. DDPG has
been used for single reward maximization in [46,47] for communication tasks. Here, we
use DDPG for MORL primarily because it can accommodate continuous states and actions
while being comparatively less computationally intensive. More powerful RL algorithms
are also available, but they require significantly more computational resources.

In [60], the authors also use DDPG to learn multiple tasks from reward vectors.
Similar to our approach, they also use a reward vector to learn multiple value functions
simultaneously. This is in contrast to standard single-objective RL methods that use a
scalar reward signal to learn a single value function. However, this work focuses on multi-
task learning. It assumes the tasks are exclusive (i.e., do not occur simultaneously) and
independent (i.e., the objectives are non-conflicting and therefore no tradeoffs are necessary).
In short, this work is not a multi-objective optimization problem where tradeoffs need to
be made.

Our work is also closely related to [61]. They also use MORL DDPG for an autonomous
driving application scenario. In this work, different agents learn policies for different tasks
and collectively form a combined policy. However, their method uses a Thresholded
Lexicographic Ordering (TLO) method. This requires the user to specify the preferred
ordering over objectives and their thresholds prior to training. As explained previously,
this is generally not possible because the users usually adjust their preference after the node
has been deployed. The alternative of storing policies for all possible orders and thresholds
is not scalable.

Our proposed MORL MDP and algorithms can learn intelligent policies at lower
costs by using continuous state and action spaces from multiple reward sources using
a reward vector. Furthermore, our proposed algorithms can learn to tradeoff between
multiple objectives at runtime, similar to single-policy MORL methods but using much less
computational resources than single-policy and multi-policy methods.

Since we concentrate on MOO with MORL in this work, we have yet to address
issues of intermittent computing, task dependency, and network-based optimizations in
IoT systems. An alternative approach for consolidating multiple objectives may be a
game-theoretic/multi-agent approach as explored in [62,63].

Although we have focused our discussion on MOO for energy scheduling in EHWSNs
until now, MOO solutions are quite popular in IoT systems when they focus on holistic
network performance rather than individual node energy-neutrality. These works primar-
ily target issues like sensor node deployment configuration to maximize coverage and
lifetime [64–66] or optimizing the routing parameters while reducing the latency and en-
ergy consumption [67,68]. It is possible to solve these problems with traditional heuristics
because they are defined with time-invariant objective functions [69,70]. As to our knowl-
edge, MOO in IoT systems for optimization problems with time-variant objective functions
(e.g., duty cycling optimization for EHWSNs) has not been discussed enough. Hence,

J. Low Power Electron. Appl. 2022, 12, 53 7 of 33

we propose our low compute MORL framework to optimize problems with time-varying
objective functions.

3. System Model

Figure 2 assumes a harvest-store-use solar EHWSN that is required to be always
on. Although this system model is specific to multi-task EHWSNs for optimizing energy
usage, it can be easily adapted for other resource-scheduling problems in IoT embedded
systems. The EHWSN is equipped with an energy harvester and a finite energy buffer.
We assume a battery for the sake of example but any other type of energy buffer can
also be used (e.g., super-capacitors). The user requests the node to execute various tasks
relating to sensing, communication, and processing. Each task request has an associated
energy demand to satisfy various performance requirements (e.g., sensing rates [29] and
transmission throughputs [6,7]).

Harvester

ℎ𝑡

Battery

𝑏𝑡

Priority

𝜔𝑡
𝑖

MORL

Agent

Task Reward

𝑢𝑡
𝑖 = min 1, 𝑈𝑖

𝑧𝑡
𝑖

𝑑𝑡
𝑖

Demand

𝑑𝑡
𝑖

Energy Budget

𝑧𝑡
𝑖

Forecast

𝑓𝑡

Node Tasks
Sense Comm. Processing

Conformity

𝑘𝑡
𝑖

MORL Framework

Signal FlowEnergy Flow

Tasks

ENP Reward
𝑢𝑡
𝐸𝑁𝑃 = 𝑈𝐸𝑁𝑃(𝑒𝑡)

Figure 2. A general system model for multi-task EHWSNs.

The MORL agent optimizes energy usage in discrete timesteps. It intelligently dis-
tributes the energy across various tasks at each timestep. Each task generates a task-utility
depending on how much energy it was allocated. The weighted sum of all task-utilities
gives the node-utility. The agent’s objective is to maximize node utility.

The energy required to fully conform to the user’s request to execute the ith task is di
t ∈

[zi
min, zi

max] . di
t is determined by the user/application and generally varies with time [7,29].

For example, a sensing task request may have a high energy demand d corresponding to
an increased sensing duty cycle; or the user may request a higher QoS thus increasing the
energy demand for a transmission task.

The MORL agent observes its environment (the system state) at timestep t to decide
the task energy, zi

t ∈ [zi
min, zi

max] . It can under-provision a task to conserve energy by
sacrificing task performance. The amount of under-provisioning is represented by the
conformity factor ki

t ∈ [0, 1]. The actual energy allocated to task i is zi
t = max(zi

min, di
t × ki

t).
zi

min represents the minimum energy required to run the task. (If zi
t < zi

min, the task fails.)
The task-utility is given by ui

t = min(1, Ui(zi
t/di

t)), where Ui is a monotonically non-
decreasing function. Since over-provisioning energy to a task does not result in increased
utility, we constrain the task-utility to be ui

t ≤ 1.
Our proposed system model improves over traditional system models by explicitly

allowing the agent to under-provision the task energy and also preventing any over-
provisioning. Traditional solutions usually did not consider the time-varying utilities of
tasks and opportunistically maximized duty cycles [8,9]. For e.g., if the objective were to
maximize the sensing rate, the node would reactively increase the sensing rate whenever

J. Low Power Electron. Appl. 2022, 12, 53 8 of 33

energy is available [9,18,20] without taking into account whether the sensed data was useful
to the user or not. However, as pointed out in [7,29], task utilities generally vary with time
and it would be wiser to expend energy in periods of high utility over low utility. With our
system model, it is possible for the MORL agent to under-provision tasks that have lower
priority/utility for energy savings.

Energy Neutral Operation

For a node with n tasks, at time t, the battery level is bt ∈ [0, bmax], the harvested
energy is ht ∈ [0, hmax], the total energy demand is dt = ∑n

i=1 di
t and the energy consumed

by the node is zt = ∑n
i=1 zi

t s.t. zmin ≤ zt ≤ zmax. The charging/discharging losses of
the battery are characterized by a function B(). The energy dynamics of the system are
therefore given by bt+1 = min(bt + B(ht − zt), bmax).

Perfect energy-neutrality is guaranteed if ht − zt = 0∀t although this might not
always be possible or even desirable. For instance, the node must generally maintain a
minimum level of operation at all times i.e., zmin > 0 to account for the energy spent during
sleep/listening mode or by the base sensing rate [10]; or the node may need to operate
during the night (ht < zt). In other situations, it might not be best to greedily consume all
the energy that has been harvested because some of it might be stored and used to extract
more utility in the future. However, the node is energy-neutral if E[z] = E[h] where E[·] is
the expectation operator. This implicitly assumes that the EHWSN is designed to meet the
request demands such that E[d] = E[h]. Causality constraints require that the cumulative
node energy cannot exceed the cumulative harvested energy i.e., ∑t

0 zt ≤ ∑t
0 ht. The node

is operational at time t if bt + ht ≥ zmin. Otherwise, there is a downtime. When this occurs,
the node becomes non-operational and consumes all of the energy harvested to recharge its
battery to a user-specified level before starting up again.

One trivial policy may be to greedily maximize conformity at all times, i.e., ki
t = 1.

This increases the risks of downtimes due to severe power depletion. Another trivial
solution is to always operate the node at the minimum level of operation i.e., zi

t = zi
min.

This leads to wastage of the potential utility of the node. The ideal energy management
strategy would reduce downtimes while ensuring that all energy harvested is used wisely
to maximize utility. The energy-neutrality of the node at time t is given by the Energy
Neutral Performance (ENP) metric et = ∑t

0 B(ht − zt) = b0 − bt, expressed as the total
difference between harvested and consumed energy [7–9].

The ENP-utility is uENP
t , given by a function UENP(et) which reflects the energy-

neutrality of the node. The node-utility is a weighted sum of the individual task-utilities
w.r.t. their priorities. For an EHWSN with n-tasks, the relative priorities between its
n + 1 objectives is expressed by ωt = (ω1

t , ω2
t , . . ., ωn+1

t) where ωi
t ∈ [0, 1] is the prior-

ity/preference for the ith objective. ωn+1
t = (1−∑n

i=1 ωi
t) is the implied priority for the

energy-neutrality of the node. With a slight abuse of notation, for single-task EHWSNs,
the priorities of task maximization and ENO are represented by ωt and (1−ωt). The agent’s
ultimate objective is to maximize the overall node-utility wt = ∑n+1

i=1 ui
tω

i
t. If the node had

infinite energy, the obvious policy would be to maximize ui
t for all tasks. However, due to

severe energy constraints, the MORL agent has to decide which utilities to maximize and by
how much w.r.t. the user’s priority.

It is important to note that ui
t and wt denote the instantaneous utilities. They do not

reflect long-term returns and therefore cannot directly quantify the effectiveness of the
policy. For instance, in the case of a solar EHWSN, the instantaneous ENP et does not
give us much information about the long-term energy-neutrality of the policy because it is
expected to fluctuate over the course of a day. Thus, to compare and improve policies, we
require the notion of the value of a policy which we discuss in the following section.

4. Theoretical Background

In this section, we introduce the Deep Deterministic Policy Gradient (DDPG) RL
algorithm [59] and describe the MOMDP for MOO using RL.

J. Low Power Electron. Appl. 2022, 12, 53 9 of 33

4.1. Single-Objective RL

In a standard SORL, an agent observes the state of its environment st ∈ S at each
timestep and then performs an action, at ∈ A, in accordance with some policy π(a|s). As a
result, it moves on to the next state s′ and receives a scalar reward rt reflecting how optimal
the action was in relation to the optimization objective. The rewards are presented via the
reward functionR(s, a, s′) and are typically discounted by γ ∈ [0, 1]. The procedure then
restarts once the agent achieves a terminal state (the conclusion of an episode). The agent
learns progressively better policies that maximize its cumulative reward using the rewards
and its prior experiences. An episodic discounted Markov Decision Process (MDP) is
used to model this sequential decision-making situation. The MDP is defined by a tuple
(S ,A,P,R, γ) where S is the continuous state space, A is the continuous action space and
P(s′|s, a) defines the transition probability from state s to s′ as a result of action a.

The Q-value of a state-action pair Qπ(s, a), w.r.t. policy π, gives the expected return
when executing action a from state s as defined in Equation (1a) for an episode of length T.
It can be computed recursively by using the Bellman equation in Equation (1b).

Qπ(s, a) = Eπ

[
T

∑
t=0

γtR(st, at, st+1)|s0 = s, a0 = a

]
(1a)

Qπ(s, a) = Eπ [R(s, a, s′) + γQ(s′, π(s′))] (1b)

The main idea behind RL is for the agent to learn a policy to select an action that maxi-
mizes the Q-value for each state that it encounters (procedural knowledge). This requires
learning the Q-values of all state-action pairs (predictive knowledge). We approximate the
Q-values with a neural function approximator Qθ(s, a) parameterized by θ (the critic). The
policy is output by a function πφ(s) with parameters φ (the actor).

We employ the Deep Deterministic Policy Gradient (DDPG) [59] RL algorithm for this
work. DDPG is an off-policy actor-critic formulation. Off-policy points to the fact that the
algorithm can learn the Q-function for a policy π although its training examples may be
obtained from a (slightly) different policy. This off-policy behavior will be crucial later
on when we have to learn policies with different objectives from the same set of training
examples.

Previous RL solutions were limited because they used discrete state-action spaces [7,9].
We opt for DDPG because it supports continuous states and actions. It is also simpler to
implement in comparison to other RL algorithms of similar nature for continuous control.
The DDPG critic evaluates the Q-value of state-action pairs whereas the actor outputs a
deterministic action for a given state. To encourage exploration, some random noise is
added to the actor’s output during the learning phase. We also maintain time-delayed
versions of the actor and critic referred to as target networks [15], Qθ−(s, a) and πφ−(s),
to increase learning efficiency and stability. The parameters of the target networks are
updated by Polyak averaging with the parameters of their main counterparts.

During training, the agent collects experience tuples (s, a, r, s′) at each timestep t and
stores it in an experience replay buffer [15]. At each training step, a random minibatch B of
experiences are selected and a gradient descent is performed to minimize the loss functions
in Equations (2a) and (2b).

L(θ,B) = EB
[

Qθ(s, a)− (r + γQθ−(s
′, πφ−(s

′))
]

(2a)

L(φ,B) = −EBQθ(s′, πφ(s′)) (2b)

Minimizing Equation (2a) gives more accurate estimates of expected return in taking
a particular action in a particular state. On the other hand, minimizing Equation (2b)
corresponds to choosing the action that maximizes return (or Q-value) from a given state.

J. Low Power Electron. Appl. 2022, 12, 53 10 of 33

4.2. Multi-Objective RL

In a typical MOO problem, an optimizing variable is mapped into a multi-dimensional
objective space by objective functions. Pareto-optimal points are those mappings in which
one objective’s value cannot be increased without lowering the value of at least one other
objective. The utility corresponding to the value of the optimizing variable is given by the
linear combination of its mapped objective values weighted by user-defined priorities (We
do not cover non-linear utility functions in this work).

Most popular MOO solutions assume a time-invariant objective function. In such
a case, Evolutionary Algorithms (EA) or Monte Carlo (MC) rollouts are used to map a
sample population of the optimizing variable to points in the objective space. This usually
takes many rollouts/generations. By doing so, we hope to either find the value of the
variable that has the highest utility or approximate the Pareto-frontier with some function
or visualization technique. These methods have been used extensively in the optimal
positioning of sensor networks which involves a tradeoff between the conflicting objectives
of node lifetime, coverage, and cost within the computation, energy, and communication
constraints [67]. For e.g., in [71], the authors use GA to minimize energy consumption
and node count while maximizing coverage for a sensor network. They assume that
the nodes are statically deployed and that the Quality of Service (QoS) remains constant.
Each optimization process takes hundreds of generations to converge. This approach
works for this particular problem because the working environment (optimization space)
does not vary drastically from one generation to another i.e., the optimization problem
is time-invariant.

Unfortunately, these methods are not very useful when the objective function is time-
variant like in the case of energy optimization of EHWSNs with variable energy availability
at each time step. In our case, the RL agent has to output an action at every timestep
such that it trades off between the different objectives. The agent’s action π(s) = a is
the optimizing variable in this case. The objective functions are the Q-functions Qπ(s, a)
because they quantify how the actions will ultimately affect the long-term cumulative
payoff. Qπ(s, a) = Qπ(s, π(s)), however, is parameterized by the state s, which evolves at
every timestep. Figure 3 illustrates this, showing how the same set of sampled actions map
to different locations in the objective space as the state changes from s1 (blue) to s2 (orange).
Thus, due to the time-varying nature of the objective space, using elitist multi-objective
optimization techniques like Monte Carlo (MC) rollouts or Evolutionary Algorithms (EA)
is particularly unfeasible. If one were to use, say MC, one would have to sample many
rollouts, approximate the Pareto frontier, and find the solution with the best utility at every
time step. This requires very fast and very powerful computation which is not possible in
sensor nodes or similar embedded systems.

Figure 3. The Pareto-front changes when the agent transitions from state s1 to s2. Crosses indicate
Pareto-dominated actions. The marker size represents the utility of the action.

J. Low Power Electron. Appl. 2022, 12, 53 11 of 33

Thus, we propose a MORL framework in Section 5. Our framework learns the Q-
functions and policies that can deduce the best action to maximize utility from Pareto-frontier.
We first develop a general Multi-Objective Markov Decision Process (MOMDP) for MORL
with m objectives. S is the continuous state space, and A is the continuous action space.
The reward function is now a vector function, ~R(s, a) = [R1(s, a), R2(s, a), . . ., Rm(s, a)] and
the discount factors corresponding to different objectives are given by γ = [γ1, γ2, . . ., γm].
The transition probability from s to s′ due to action a is given by P(s′|s, a). The Q-function
is also a vector function ~Qµ = [Q1, Q2, . . ., Qm] whose elements represent the different
objective functions. µ is the MORL policy that extracts the Pareto-optimal action w.r.t. the
user-preference ω ∈ Ω. The next section describes how we create a suitable MOMDP for
EHWSNs and how the agents can learn the vector Q-functions to extract the optimal actions.
Ω determines the space of preferences among the m objectives. The MORL policy µ is now
associated with an m-dimensional vector Q-value function ~Qµ = [Q1, Q2, . . ., Qm] whose
components correspond to the different objective functions. µ extracts the Pareto-optimal
action w.r.t. the user-preference ω ∈ Ω. In the following section, we develop a suitable
MOMDP for EHWSNs and present solutions to learn the vector Q-functions and extract the
optimal actions.

5. Proposed MORL Framework
5.1. MOMDP Formulation

Here we define the reward function and the state-action space of our MOMDP for the
system model in Section 3. Although the following description is specific to the energy-
scheduling problem in EHWSNs, the general idea behind the MOMDP formulation is
applicable for any type of resource-scheduling problem in IoT embedded systems.

Multiple Reward Functions: Since modern EHWSNs have multiple objectives, a reward
function that supports multiple sources of rewards is needed. In previous methods where
multiple objectives are projected into a scalar by scalarization, the rewards become noisy
and obfuscate the actual objectives. The biggest downside is that tradeoffs cannot be made
at runtime [51] because the relative weights between objectives need to be known and
fixed before training. Another drawback is that scalarization sometimes involves intricate
reward shaping which introduces considerable design bias [7,52,72]. Our framework learns
from distinct, independent reward signals to get around these restrictions without any
complex reward shaping. Each of these reward signals represents a single optimization
target. In our framework, the task rewards are the task utilities, and the ENO reward is the
ENP-utility.

Well-defined state space: Our framework defines the state at time t by a tuple st =
(τ, bt, b̄t, ht, ft, dt). dt = (d1

t , d2
t , . . ., dn

t) is a tuple containing the different task requests and
ht is the harvested energy. Our state definition includes important temporal information
(which are not present in previous works)—(i) τ which represents the time of the day,
(ii) b̄t = ∑T

k=0 bt−k/T which is a moving average of battery values over a horizon T, and
(iii) ft ∈ [0, 1] which is a rough prediction of future energy supply as in [9]. By making
these additions to the state definition, the learning process is stable and faster compared to
earlier research [7,50].

Safe Actions: RL learns through exploration and mistakes are inevitably necessary
during the initial stages of training. These mistakes need to be minimized in the real world
because they lead to loss of utility and may have potentially unintended consequences,
e.g., node shutdown due to energy depletion. Previous RL formulations define actions so
that they directly correspond to the energy consumption of the node, e.g., the node duty
cycle or the transmission power [7,9,10,44,50]. This is dangerous because the agent may
sometimes sporadically take very unreasonable actions (e.g., duty cycles suddenly spike
causing battery exhaustion). This is usually due to maximization bias in Q-learning when
using a discrete action space or defective policies owing to factors such as bad experience
samples and learning instability.

J. Low Power Electron. Appl. 2022, 12, 53 12 of 33

In our formulation, we define the action to be the node’s conformity to various task
demands. For an n-task EHWSN, the action is kt = (k1

t , k2
t , . . ., kn

t) where ki
t is the conformity

of the node to the request di
t. This definition states that actions are safe because they never

over-provision energy and hence avoid unintended battery depletion. As a result, the
definition of our actions reduces the effects of catastrophic policies even if learning results
in a bad policy, in contrast to action definitions in earlier techniques [7,9,50].

5.2. Runtime MORL

We now describe our first algorithm, Runtime MORL (Algorithm 1). This algorithm
takes SORL actor-critic pairs trained with different reward functions as input. Each of these
actor-critic pairs is trained to maximize a different objective. The algorithm uses these
actor-critic pairs and generates a policy that can tradeoff between different objectives at
runtime without additional training.

The action space of n-task EHWSN has |k| = n dimensions. However, the EHWSN
has to optimize across n + 1 objectives, with energy neutrality as the n + 1th objective.
Algorithm 1 outputs each element of the action space using n pre-trained greedy actor-
critic networks (πi, Qi). The ith task’s greedy conformance gi, is output by πi. The total
conformance of the node gENP, with respect to the total demand d = ∑n

i=1 di, is output by
another pre-trained greedy actor-critic (πENP, QENP). All greedily energy-neutral actions
can be represented by a plane gENP = ∑n

i=1 ki, in the action space. The convex hull that
contains this plane and all of the greedy actions is then determined.

Minimizing Computation Costs

One solution to finding the optimal action k∗ would be to learn a function that maps
the entire convex hull to the objective space and then maximizes the node-utility using
methods like gradient descent. This makes the learning problem very complex with
extremely high computation and learning costs. Another solution would be to maintain
a set of policies for each preference (ω) but this is not a sustainable approach because
ω takes continuous values. In Algorithm 1, we sample the locally approximate Pareto-
optimal from the convex hull to determine the optimal action k∗. Algorithm 1 samples
j actions x1, x2, . . ., xj according to the user-preference ω = (ω1, ω2, . . ., ωENP). The core
idea behind this approach is that when we progress from one greedy action to another
along the convex hull, we are actually moving along the Pareto-front in the objective space
and trading off between different objectives. This is possible in our case because we have
assumed task-utility functions are a monotonically non-decreasing function of conformity
(or action). The linear combination of the critics’ outputs Qi and QENP, weighted by the
task preferences ωi and ωENP, gives us the composite Q-values for each of these sampled
actions. The action with the highest values is the most locally optimal action. When using
Algorithm 1 in this way to determine the optimal action, a change in ω at runtime merely
necessitates inferring the critics and recalculating the action-values, which is a relatively
inexpensive process compared to gradient descent. By sampling more actions, we can
increase the optimality of the solution with a corresponding increase in computation costs.
Overall, compared to doing gradient descent to determine the best action, this technique
uses far less processing. With this sampling strategy, we can always identify an action
that is at least as beneficial as the greedy ones without making any assumptions about the
concavity of the Pareto-frontier. This is important because concave Pareto-frontiers are a
challenging problem for several MORL algorithms.

The implementation of Algorithm 1 for a scenario with a single-task optimization is
shown in Figure 4. While gENP greedily preserves energy-neutrality by decreasing the
conformity k, g1 greedily maximizes the task-utility by boosting conformity. Here, g1 and
gENP define a straight line which is the convex hull. Two points on the line denoted by
the red crosses are sampled using Algorithm 1. The outputs of the critics (Q1, QENP) are
used to map the Q-values corresponding to all actions (both greedy and sampled) onto
the objective space. These Q-values are weighted by ω and the best action is determined.

J. Low Power Electron. Appl. 2022, 12, 53 13 of 33

In Figure 4, action x1 is the best action since it has the highest composite Q-value (indicated
by the size of the circles).

Algorithm 1: Runtime MORL.
Input : ω ∈ Ω, priorities for n + 1 objectives

s ∈ S , State
(Qi, πi), Greedy actor-critics, i = 1, 2, . . . , n
(QENP, πENP), Energy-neutral actor-critic

Output : Action k∗ that maximizes utility, |k∗| = n
1 actionList = [] // Proposed actions list
2 for i = 1, 2, . . .n, ENP do
3 gi = πi(s) // Greedy Actions
4 actionList.append(gi)

5 end for
6 Sample j actions x1, x2, . . .xj from the convex hull of actions in actionList and

append to actionList
7 W = { }
8 for x in actionList do
9 W[x] = ∑n+1

i=1 Qi(s, x)ωi

10 end for
Return : k∗ = argmax

x
W[x]

Action Space, (𝑛 = 1) Objective Space

𝑔𝐸𝑁𝑃

ENP Objective, 𝑄𝐸𝑁𝑃

action, 𝑘

sampled

actions

𝑥1 has the highest

utility for a given 𝜔𝑔1

greedy ENP

action

greedy task

action

𝑥1

𝑥2

Pareto-front

Task Objective,

𝑄1

Figure 4. As we move from one greedy action to another in the action space, we traverse along the
Pareto-optimal frontier in the objective space. Runtime MORL samples actions (red crosses) from in
between the greedy actions, g1 and gENP.

5.3. MORL with Off-Policy Corrections

Now, let us focus on the scenario where there are no pre-trained, greedy actors
and critics available; and greedy actors/critics have to be trained tabula rasa. With our
second algorithm, Off-policy MORL (Algorithm 2), the critics learn their Q-values from
the experience samples gathered from the agent’s interaction with the environment, while
the actors simultaneously learn the greedy policies. Using Algorithm 1, the agent chooses
actions that fall between the greedy actions based on the preference ω parameter. Thus,
when implementing Algorithm 2, the critics must learn the Q-values Qi for a greedy policy
πi from transitions generated by a different policy, say µ. This requires off-policy corrections
i.e., a method to compensate for the difference in state transition probabilities (s to s′)
between πi and µ. We achieve this by multiplying the expected Q-values of the next state

J. Low Power Electron. Appl. 2022, 12, 53 14 of 33

by their ratio of their transition probabilities, ρi(s, s′) = P(s′ |s,πi)
P(s′ |s,µ) in Equation (3) where

we use the approximation ρi(s, s′) ≈ ωi. This approximation makes sense (theoretical
guarantees are not in the scope of this work) because µ is increasingly dominated by
πi when ωi is closer to unity and therefore does not significantly alter the expectation.
However, when ωi is extremely low, µ is considerably further away from πi and as a result,
the expected return is proportionately decreased.

Qi(s, a) = Eπi [r
i + γiQi(s′, πi(s′))]

= Eµ[ri] + γiρi(s, s′)Eµ[Qi(s′, πi(s′))]

≈ Eµ[ri + γiω
iQi(s′, πi(s′))]

(3)

Algorithm 2: Off-policy MORL.
Input : γi, discount factor for ith objective, i = 1, 2, . . .n + 1
Initialize :Randomly initialize actor-critic pairs (Qi, πi) and empty replay buffer D

1 for episode = 1, L do
2 for t = 1, T do // T = episode length
3 Observe the preferences ωt ∈ Ω
4 Observe state st
5 Select action at using Algorithm 1
6 Execute action at, observe the reward vector ~rt = [r1

t , r2
t , . . . , rm

t] and the
next state st+1

7 Store (st, at,~rt, st+1, ωt) in D
8 Sample minibatch B of N transitions from D
9 for i = 1, n + 1 do

10 Update Qi using ri and γi with Equation (3),
11 Update πi
12 end for
13 end for
14 end for

6. Evaluation Setup
6.1. Simulation Environment

We test our framework by simulating solar EHWSN systems using data on solar
radiation collected hourly by external rooftop pyranometers from 1995 to 2014 [73]. As a
result, we chose an hour as the time interval for each timestep. We train the RL agents
for the first ten years (1995–2004), and then measure their effectiveness over the following
ten years (2005–2014). Each episode of our MDP lasts for one day (or 24 timesteps). The
ten-year training period can be shortened to less than a year if we increase the granularity of
the timesteps and adjust the discounting rates correspondingly. However, we maintain an
hourly resolution for a fair comparison with previous methods [8,9]. An episode abruptly
terminates with zero rewards when downtime occurs. In such a case, a new episode begins
once the node has recovered. The parameters of the evaluated EHWSN system, normalized
to bmax, are shown in Table 1. When ht = 0 (no harvested energy), the node can deplete
5% of the battery per timestep. This means that the node can drain a fully charged battery
within 20 h at maximum power and takes 200 h (≈8 days) at minimum power with no
energy harvesting. These parameters are based on a realistic EHWSN [74] with a current
rating of 100 mA equipped with a 2000 mA h battery. As soon as the battery capacity
falls below 10%, the node enters recovery mode and is reset. To simplify comparison and
analysis, we assume this recovery is instantaneous without loss of generality. The request
function generates the task demands (or requests) at random so that E[ht] ≈ E[dt]. This
guarantees that ENO is indeed achievable. The rolling average of ht for the following

J. Low Power Electron. Appl. 2022, 12, 53 15 of 33

10 days is added with some random noise to provide a rough estimate of the weather
forecast ft.

Table 1. Simulation Parameters.

Parameter Maximum Value Minimum Value

Battery, bt bmax bmin = 10% of bmax

Harvester, ht hmax = 5% of bmax hmin = 0

EHWSN, zt zmax = 5% of bmax zmin = 0.5% of bmax

Requests, dt dmax = 5% of bmax dmin = 0.5% of bmax

6.2. Utilities and Reward Functions

We use single-task (bi-objective) and dual-task (tri-objective) EHWSNs for our eval-
uations. The single-task node increases the node conformity linearly in compliance
with the user demand while retaining long-term energy neutrality to maximize sense-
utility [9,18,20,29]. Thus, we establish the rewards for maximizing the sensing rate by the
sense-utility usense

t , which increases linearly with conformity (energy usage) in accordance
with the linear-utility function in Figure 5 (left).

Figure 5. Linear and concave reward functions quantify the utilities for different tasks such as sensing,
communication, and processing. The ENP-utility function indicates the long-term energy neutrality
of the node.

The ENP-utility uENP
t corresponds to the rewards that represent the energy-neutrality

of the node given by

uENP
t =

{
1, if b̄t ≥ bth
b̄t−bmin
bth−bmin

, otherwise
(4)

Figure 5 (right) illustrates this reward function. bth is a user-defined battery threshold,
and b̄t is the moving average battery level over ten days. This reward function is similar to
those in [7–9,52], but require less reward shaping. In addition, our reward function uses b̄t
instead of bt since it correctly captures the long-term temporal nature of ENO. bth is fixed
at 80% of bmax although this can be changed as needed. The relative preference between
optimizing sense-utility and ENP-utility is reflected in ω for single-task EHWSN. ω = 0
places an emphasis on energy-neutrality whereas ω = 1 maximizes sense-utility.

We evaluate EHWSN systems that need to sense and transmit data when discussing
dual-task EHWSNs. These nodes must increase their throughput in addition to maintaining
energy neutrality and increasing their sense-utility. We assume a simplified transmission
model with Binary Phase Shift Keying (BPSK) modulation with additive white Gaussian
noise and Rayleigh fading. This is only for the sake of an example and can be modified
as required. We do not consider the effects of multi-hop transmission and routing issues
here because it adds another layer of complexity that does not directly pertain to the issue

J. Low Power Electron. Appl. 2022, 12, 53 16 of 33

of MOO. For the sake of simplicity, we have assumed that a receiver is always ready to
receive the data.

The node’s transmission throughput P is given by Shannon’s capacity formula P =
log(1+ k) where k is the SNR of the transmission signal. In our case, the conformity k = z/d
is the SNR. The transmission task demand d can be interpreted as the amount of transmis-
sion power required to overcome channel noise and maintain the QoS determined by the
user and z is the actual transmission power which results in throughput P. utx

t = P is both
the task-utility and reward. Higher SNR is necessary for higher throughput, but through-
put does not increase linearly with higher SNR (transmission power). The concave-utility
reward function in Figure 5 serves as a representation of this relationship.

Since the utility is non-linear, it may be wiser to use transmission energy to drastically
improve the throughput when the channel is very noisy (∼ high demand) than to use the
same amount of energy to increase the throughput by only a small amount when there is
less noise (∼low demand).

The dual-task node must constantly choose how much energy to devote to trans-
mission and sensing operations in order to increase throughput (or tx-utility) utx

t and
sense-utility usense

t while maintaining long-term ENO (maximizing uENP
t). The tuple

ω = (ωsense, ωtx, ωENP) s.t. ωENP = 1− (ωsense + ωtx) indicates the relative preference
between the objectives.

6.3. Metrics

We compare the task-utilities of various solutions based on their yearly average. The to-
tal number of times the node enters recovery mode (i.e., downtimes) is used to compare
the energy-neutrality of various solutions. Using downtimes as a metric for ENO is a more
accurate reflection of the actual energy-neutrality than the ENP-utility and facilitates fair
comparison. An intelligent policy strikes an equilibrium between increasing task utilities
and reducing downtimes. The learning cost for a particular policy is determined by the
number of downtimes that occur during the training period, with fewer downtimes being
preferable (the training duration is the same for all RL agents). The node should ideally
learn an energy management strategy with as little downtime as is feasible.

We perform each experiment with ten random seeds and average over them for
comparison. The interquartile range (IQR) is indicated by the shaded regions and error
bars (not shown in some figures for clarity).

7. Experimental Results

In this section, we present our results and answer the following questions:

• Do RL agents trained using the MDP (state and action definitions) based on our
proposed general MORL framework perform better than heuristic methods and tra-
ditional RL solutions when optimizing for a single objective? Specifically, do they
extract higher utility at lower learning costs?

• How well does the proposed Algorithm 1 tradeoff between multiple objectives at
runtime using greedy SORL agents? How does it compare to traditional scalarization
methods that are optimized using non-causal information?

• Can the MORL agents trained with our proposed MOMDP learn policies to maximize
the tradeoff between different objectives? What is the cost of training in such a
scenario?

A summary of the different SORL and MORL agents we evaluate is given in Tables 2 and 3.

J. Low Power Electron. Appl. 2022, 12, 53 17 of 33

Table 2. Single-Objective ENO Agents.

Sense Objective,
ω = 1

ENP Objective,
ω = 0

Ours (RL Agents) sense enp

Ours (Smaller NNs) tiny_sense tiny_enp

Heuristic Methods max_enp max_k

Partially Markov States [7,9,10,44,50] pomdp_enp

Absolute Actions [7,9,10,44,50] raw_sense raw_enp

Table 3. Multi-Objective ENO Agents.

Method Name Rewards/Values

Ours (Algorithm 1) morl_runtime (2-task) ωQπsense + (1−ω)Qπenp

Ours (Algorithm 2) morl_offpolicy (2-task) ωQπsense + (1−ω)Qπenp

Ours (Algorithm 2) morl_multi (3-task) ωsenseQπsense + ωtxQπtx + ωENPQπenp

Scalar Product [7,50,52] mul_scalar usense × uENP

Scalar Sum [51,52] add_scalar ωusense + (1−ω)uENP

7.1. Single-Objective RL Policies Using Proposed MDP
7.1.1. Comparison with Heuristic Methods

Figure 6 shows the sense-utility and the corresponding downtimes experienced by the
sensor nodes for a test period from 2005 to 2014 (ten years) under different policies. sense
(red) and enp (green) are SORL agent policies (γ = 0.997) that maximize sense-utility and
ENP-utility respectively. We compare them with two heuristic policies, max_enp and max_k.

max_k represents the upper limit of utility maximization It greedily maximizes the
sense-utility using a trivial policy that always conforms maximally (kt = 1) to all task
requests without any consideration for long-term energy neutrality. As a result, it is also
the least energy neutral with the highest number of downtimes. max_enp has the fewest
possible downtimes and is, therefore, the most energy-neutral policy. It achieves this by
increasing the node conformity with the battery level w.r.t. a non-linear function (shown in
Figure 7). Greedy search and non-causal data were necessary to empirically establish the
parameters of this function. max_enp indicates the upper limit of ENO because no policy
can extract more utility than it does without increasing the frequency of downtimes.

In Figure 6, we observe that the energy neutrality (downtimes) of enp and max_enp
are similar (green and blue bars). This means that enp is near-optimal w.r.t. the ENO objective.
Using our MDP, enp performs as good as max_enp without the need for any non-causal
information or empirical hand-tuning. Thus, we use enp as the baseline for ENO when
comparing it with other RL agents. An RL agent would outperform enp if it has lower
downtimes than enp and extracts higher sense-utility.

We also observe that sense is more aggressive than enp in maximizing utility. sense
scores higher sense-utility than enp at the cost of larger downtimes. This is expected
because sense was trained using only the sense-utility reward function and does not receive
any direct feedback from the ENP-utility reward function. In spite of this, sense does not
disregard energy neutrality like the trivial max_k agent which incurs very high downtimes
(orange bars). sense learns to avoid downtimes so that it does not lose any opportunity
to collect more rewards in the long term. This behavior is attributed to the discounting
factor γ, which indirectly accounts for the ENO objective. We cannot conclude sense is
optimal despite the fact that it extracts higher utility within competitive bounds of energy
neutrality. A better solution would increase sense-utility while keeping sense’s downtimes

J. Low Power Electron. Appl. 2022, 12, 53 18 of 33

constant. Since it is difficult to establish clear upper bounds in this situation, we compare
other agents’ sense-utility against sense as a starting point.

Figure 8 illustrates the difference between the policies of sense and enp in more de-
tail with their corresponding battery traces. The time interval shown corresponds to
autumn/winter in Tokyo. It is very difficult to avoid downtimes during this period because
opportunities to recoup any energy losses are very rare as the winter solstice approaches
(Day 356). In fact, it is very difficult to avoid downtimes unless the node has full battery
reserves on Day 260 and operates at its minimum duty cycle as much as possible. Con-
sequently, sense, which is more aggressive in maximizing the duty cycle, experiences a
downtime on Day 303 while enp maintains a conservative policy and passes the winter with
no downtimes. After the winter solstice, both agents start to refill their battery reserves.

Figure 6. Agent enp (ours, green) has similar energy neutrality (downtimes) as the most energy-
neutral policy max_enp. sense (ours, red) sacrifices some of its energy neutrality to increase its utility
but is more energy neutral than max_k.

Figure 7. max_enp Heuristic Policy. The conformity of the node decreases gradually as the battery depletes.

Figure 8. Battery traces for sense, enp. sense is more aggressive than enp when maximizing the
sense-utility and therefore experiences downtime during winter. The sharp rise in battery level after
a downtime signifies a node reset.

J. Low Power Electron. Appl. 2022, 12, 53 19 of 33

7.1.2. Adaptive Nature of RL Policies

RL solutions are superior to heuristic methods because they can adapt to changes in the
working environment. Adapting policies to battery inefficiencies has been demonstrated in
our previous works [8,9] using a simple model where these inefficiencies were lumped as
increased node consumption. In this work, we use a more sophisticated battery model (B()
described in Section 3) that addresses the discrepancies in the charging and discharging
efficiencies of the battery and the role it plays during the optimization of energy scheduling.

To investigate the effect of imperfect batteries in our framework, we compare the
performance of sense with bad_batt in Figures 9 and 10. bad_batt agent (purple) was trained
and tested similarly to sense except that its battery charging efficiency was set to 50%.
Figure 9 shows the battery traces and duty cycles for sense, enp and bad_batt in the beginning
of the year when the days are shorter and so the solar energy is limited. enp consistently
operates at the minimum duty cycle to conserve energy and avoid downtimes. sense
tries to maximize the duty cycles during the night depending on how much is harvested
during the day. Since sense has a perfect battery and there are no losses in storing and
retrieving energy, it can play safe and choose to delay the maximization opportunities.
On the other hand, bad_batt maximizes duty cycles mostly during the day. This way the
energy from the solar panel can be directly fed into the node and energy losses due to
battery charging and discharging can be minimized. Thus we see that the same MDP can
learn very different policies to optimize different objectives and adapt to different working
environments. This strengthens the case for using RL methods instead of heuristics for
self-adaptive autonomous IoT embedded systems.

We also note that bad_batt is almost as optimal as sense in spite of its inefficiency
(Figure 10). In fact, bad_batt seems to have better overall performance than sense with higher
utility and lower downtimes. However, bad_batt has fewer stable policies than sense as
evidenced by higher variations in performance (wider IQRs) among the ten different seeds
that were evaluated. Thus, the presence of an inefficient battery may cause RL to learn
policies that are more aggressive in maximizing utilities at the expense of the stability.

Figure 9. bad_batt learns to accommodate for battery inefficiencies by maximizing duty cycles during
the day. sense maximizes its duty cycle during the night depending on how much energy it was able
to harvest during the day.

J. Low Power Electron. Appl. 2022, 12, 53 20 of 33

Figure 10. SORL methods can adapt to changes in working parameters.

7.1.3. Superiority of Proposed MDP Formulation

Inclusion of temporal information for long-term optimization: The MDPs of previous meth-
ods [7–10,40,50] did not include sufficient temporal information in their state definitions
i.e., the states were only partially observed. This resulted in unstable policies as well as
larger learning costs. To study the effect of partially Markov states, we designate an agent
as pomdp_enp that has omitted τ and b̄ from its state definitions (st = (ht, ft, bt, dt)) and is
trained to maximize ENP-utility using the same reward function and training environment
as enp.

Since both enp and pomdp_enp are maximizing ENP, we are interested in how many
downtimes they incur during learning and testing. Figure 11 compares the learning costs
(top figure) and the test performance (bottom figure) between enp and pomdp_enp. We
observe that enp (green) has lower learning costs than pomdp_enp (purple), which totals to
approximately a 15% reduction. We also observe from the test results (bottom figure) that
enp is also more energy neutral than pomdp_enp.

pomdp_enp is less optimal than enp because it does not have access to sufficient temporal
information. This results in aliasing between different states. The result of such state
aliasing is shown in Figure 12 which shows the battery and node energy traces for enp
and pomdp_enp. At the beginning of Day 81, both agents are in the same state. However,
pomdp_enp observes its state as only by the instantaneous values of (ht, ft, bt, dt) whereas
enp observes its state with additional temporal information: τ which represents the time of
the day and b̄t = ∑T

k=0 bt−k/T which is a moving average of its past battery values.
enp which has access to temporal information learns that it is okay to maximize duty

cycles at dawn (because future energy harvesting possibilities will be available soon) but
not at dusk (when there will be no chance of harvesting for a long period of time). We
can observe this as the green spikes that occur at the beginning of the day (bottom figure).
However, as far as pomdp_enp is concerned, the states before sunrise and the states after
sunsets are the same because no energy is being harvested. So it (wrongly) learns to
maximize the energy consumption both at dawn and dusk (purple spikes when there is no
energy being harvested). This results in a very poor policy that has high learning costs.

Thus, we can see that sufficient temporal information is necessary to optimize for long-
term ENO. Thus, our proposed MDP state definitions with sufficient temporal information
enable learning more optimal policies at much lower costs. We also observe that the
exclusion of temporal information does not affect the performance when maximizing
sensing-utility (not shown). This is expected because optimizing policies with long foresight
are not very important for sense-utility maximization.

J. Low Power Electron. Appl. 2022, 12, 53 21 of 33

Figure 11. Including temporal information in the state definition of enp (ours) decreases the down-
times during learning as compared to pomdp_enp (traditional MDPs).

Figure 12. enp (ours) learns to discriminate between aliased states using temporal information.

Safer action definitions for efficient learning: In [29], the authors make the case that the
utilities of the task vary with time and user requirements. They argue that it is more
desirable to expend energy when the utility of the task is higher for the user than when
the utility is low. Traditional RL methods did not take this time-varying utility of tasks
into account and thus were not very energy efficient. One solution would be to include
the user’s task demand dt, into the state definition but our preliminary results show that
this requires much more computation and is less stable when training. In our MDP, we
propose to define actions as the conformity kt of the sensor node to the task demand dt. This
accommodates the time-varying nature of utility without an increasing problem complexity.

Another major advantage of our action definition is that it is much “safer”. Traditional
methods defined the MDP actions as zt, i.e., the amount of energy allocated to be consumed
by the node at each timestep [7–10,40,50]. These action definitions led to high learning
costs due to “catastrophic mistakes”. For e.g., during the exploration phase, there is
nothing stopping an agent from driving the node at a very high duty cycle even when
there is not enough energy available. This leads to node shutdown (downtime) which
is very undesirable because we would like our nodes to be at least operational, albeit
non-optimally, during the learning phase. After committing many such mistakes, the node
learns to avoid downtimes but this raises the learning costs. With our action definition,

J. Low Power Electron. Appl. 2022, 12, 53 22 of 33

even when the node explores using high conformity actions, the actual energy expended
never exceeds the demand and is always relative to the demand. This forms a natural
check against unnecessarily high energy usage and dangerous duty cycles thus minimizing
downtimes and unsafe exploration.

We evaluate agents raw_sense and raw_enp and compare them with sense and enp to
study the effects of action definitions during learning and testing. raw_sense and raw_enp
are identical to sense and enp except that their actions are defined as the absolute allocated
energy zt. sense and enp define their actions as the conformity kt.

In Figure 13 (bottom), we observe that our RL agents, sense (red) and enp (green),
incur significantly less downtimes during learning compared to agents using traditional
action definitions raw_sense(orange) and raw_enp(blue). This is especially true during the
early training phase. For e.g., in the year 1995, the learning cost of raw_sense (orange bar)
is extremely high even though it extracts much less sense-utility than sense (red). This
is because the actions of sense are defined relative to the demand and therefore never
over-provisions energy. This stops the node from exploring unnecessary and dangerous
states. This is important during training because “bad” experiences can not only increase
downtimes but also reduce the training stability. This is clearly observed in raw_sense
(orange bar) also suffers from high IQR (which indicates unstable learning) as a result
of inefficient learning. We observe that our action definition decreases downtimes by
approximately 70% for both sense and enp w.r.t. raw_sense and raw_enp.

We also observe that the policies learned by raw_sense and raw_enp are inferior to sense
and enp in Figure 14. When we compare enp and raw_enp, we observe that enp extracts
much higher utilities than raw_enp although they have similar downtimes. This means
raw_enp is losing out on many opportunities in maximizing utility. It is also very obvious
that raw_sense is non-optimal. Although its downtimes are almost as high as that of sense,
its utility maximization is much inferior to that of sense by a large margin. Thus, by defining
MDP actions in a relative manner, the nodes can learn much better policies that incorporate
the time-varying utility of tasks and reduce the learning costs dramatically.

Figure 13. Our safe action definition (sense and enp) prevents over-provisioning and reduces the
learning costs compared to traditional MDP definitions (raw_sense and raw_enp).

J. Low Power Electron. Appl. 2022, 12, 53 23 of 33

Figure 14. sense and enp learn using safe action definitions which result in robust and intelligent
policies. Consequently during the test phase, sense and enp score much higher utilities at much lower
downtimes compared to traditional solutions (raw_sense and raw_enp).

7.1.4. Effect of Size of NN

We also evaluate agents based on our MDP using a smaller NN. We do this to ensure
that our results are superior because of our MDP and not simply because of a larger NN. We
evaluate tiny_sense and tiny_enp with 64 nodes in their hidden layer (≈5 k parameters) that
are otherwise identical to sense and enp agents which have 256 nodes (≈70 k parameters).
We observe from Figures 15 and 16 that the learning and testing behaviour of tiny_sense and
tiny_enp do not differ significantly from that of sense and enp. This puts aside our suspicion
that our solutions are superior just because we use a larger NN with more computation.
The results from Figures 15 and 16 indicate that it is possible to learn intelligent policies
with small NNs and reduce computation resources required for RL-based solutions on the
edge. However, a downside to using smaller NNs is the gradual loss in training stability
(notice the large variation in sense-utility for tiny_sense during test in Figure 16 (top)). As we
reduce the size of NN further, it becomes difficult to converge during learning. One way to
compensate for the loss in learning stability would be to use specialized RL algorithms and
NN architectures depending on the hardware platform and application scenario.

Figure 15. Learning performance of agents with smaller networks.

J. Low Power Electron. Appl. 2022, 12, 53 24 of 33

Figure 16. Test performance of agents with smaller networks.

7.2. Runtime Tradeoffs

We now shift our discussion to how it may be possible to optimize runtime tradeoffs
between two or more objectives over a space of preferences. We consider the dual-objective
case where the single-task EHWSN agent has to optimize between maximizing the sense-
utility usense

t , and the ENP-utility uENP
t . ω is the user-defined parameterized priority for

sense-utility w.r.t. ENP-utility. The ultimate goal of the MORL agent is to maximize the
node-utility, wt = ωusense

t + (1−ω)uENP
t .

7.2.1. Limitations of Traditional Scalarization Methods

We first demonstrate the limitations of traditional RL methods that attempt to optimize
over multiple objectives using scalarization. Figure 17 shows mul_scalar (purple) that
scalarizes different objective rewards by multiplying them together as in [7,50,52]. Its
reward function is r = usense × uENP. This agent cannot tradeoff between sense-utility
and ENP because its reward function is fixed and does not contain the ω parameter.
The resulting policy is an “average” between maximizing sense-utility and ENP-utility and
it is not clear how one can tweak the reward function with a single parameter to gradually
bias the agent to optimize any one of the objectives.

Figure 17. Scalarization methods for MORL: add_scalar can tradeoff only if the relative priorities are
known before training. It is not clear what objective mul_scalar is optimizing.

J. Low Power Electron. Appl. 2022, 12, 53 25 of 33

add_scalar uses the reward values obtained by a linear combination of the different
objective rewards weighted by their relative preferences [51,52]. For e.g., add_scalar(0.8)
in Figure 17 uses a reward function defined by r = ωusense + (1−ω)uENP where ω = 0.8.
The resultant policy sacrifices energy neutrality (i.e., higher downtimes) for higher sense
utility. Similarly, add_scalar(0.2) trades off sense-utility for lower downtimes (better ENP).
By altering the value of ω, the user can trade off between sense-utility and ENP. However,
this method requires the user to fix the value of ω before training the RL agent. If the
user requires a different ω, the agent needs to be retrained with a new reward function
corresponding to the new value of ω. As a result, this method cannot be used to tradeoff
during runtime. This is a major disadvantage because the parameter ω can change at
every timestep. Thus, we can see that it is not possible for the user to tradeoff at runtime
using traditional scalarization methods. We refer the reader to [52] for an in-depth analysis of
different reward scalarization schemes for ENO.

7.2.2. Trading Off with Runtime MORL (Algorithm 1)

We use Runtime MORL algorithm (Algorithm 1) in order to tradeoff between objectives
at runtime by varying the parameter ω. This is implemented as the morl_runtime(ω) agent.
morl_runtime(ω) uses the actor-critic pairs from sense and enp agents to generate policies
that can tradeoff at runtime.

In Figure 18, we compare between morl_runtime(ω) and add_scalar(ω) to analyze their
tradeoff characteristics. We observe that our morl_runtime(ω) agent can indeed trade-off by
varying ω at runtime without any retraining. High sense-priority (ω = 0.8, green) increases
utility and downtimes and vice versa for low priority (ω = 0.2, red). We note that the range
of tradeoffs is lesser for morl_runtime than add_scalar. This is because the tradeoff takes place
in the value space for morl_runtime and in the reward space for add_scalar. Although the
range of tradeoffs may be decreased in morl_runtime, it is more optimal. This can also be
observed in Figure 18 where morl_runtime(0.2) (pink) consistently extracts much higher
utility than add_scalar(0.2) (cyan) for similar energy-neutrality. Likewise, add_scalar(0.8)
(orange) has disproportionately higher downtimes for only a slight increase in sense-utility
than our morl_runtime(0.8) (green).

Figure 18. morl_runtime(ω) (Algorithm 1) can tradeoff sense-utility with energy neutrality (down-
times) at runtime.

Thus, we see that our proposed Runtime MORL algorithm can generate better policies than
scalarization methods that can tradeoff w.r.t. ω at runtime.

J. Low Power Electron. Appl. 2022, 12, 53 26 of 33

7.3. Learning Multi-Objective RL Policies for ENO

The previous results demonstrate how we can use Algorithm 1 for runtime tradeoffs
using pre-trained greedy agent actor-critic pairs. We now consider a more realistic scenario
for EWHSNs where we don’t have pre-trained greedy agents. The MORL agent has to learn
these actors and critics tabula rasa and use them for runtime tradeoffs between different
objectives. We consider the case for single-task EWHSN (two objectives) and dual-task
EHWSN (three objectives). These are obviously harder learning problems that require
efficient learning within a larger exploration space.

7.3.1. 2-Objective MOO with Off-Policy MORL (Algorithm 2)

We train a single-task EWHSN MORL agent, morl_offpolicy, that has to learn policies for
runtime tradeoffs between two objectives (maximizing utility and minimizing downtimes).
Figure 19 compares the test performance for morl_offpolicy(ω) for different values of the
preference parameter ω against our baseline SORL agents sense and enp. morl_offpolicy
learns the greedy actor-critics for both sense and ENO objectives and trades off between
them using Algorithm 2. This is a difficult learning problem because morl_offpolicy has
to learn two different actor-critic pairs, optimized for two different conflicting objectives
using the same experience replay stream. Algorithm 2 achieves this by using off-policy
corrections [75,76] (see Section 5.3). This is very different from the learning process of
SORL agents like sense and enp where they learn using experience samples only for their
respective objectives.

In Figure 19, it is clear that changing ω from 0.1 to 0.8 increases sensing utility with
corresponding tradeoffs in energy neutrality. Both morl_offpolicy(0.1) and morl_offpolicy(0.8)
(blue and brown bars) incur slightly higher losses (and higher variations) in energy neutral-
ity compared to the sense and enp baselines (red and green bars). This is expected because
morl_offpolicy uses the same amount of training as SORL baselines to learn a harder problem
so there is a slight degradation in stability and optimality.

Figure 20 compares the cumulative learning costs between morl_offpolicy and tradi-
tional scalarization methods (add_scalar and mul_scalar). We observe that the gross learning
cost of morl_offpolicy is not much higher than that of other methods. Thus, morl_offpolicy
can learn a more difficult problem (i.e., multiple actor-critic policies that can tradeoff at
runtime) with similar learning costs as previous methods.

We analyze the learning performance of morl_offpolicy in more detail in Figure 21
where we compare the learning costs (downtimes) between morl_offpolicy and SORL base-
line agents. We observe that the learning costs are somewhere in between that of sense and
enp. This is encouraging because this means we do not need exorbitant learning costs for
a MORL policy using our framework. The reason for this efficient learning is as follows.
During the early stages of training, the actor-critic pairs (like that of sense) are imperfect
and prone to taking very extreme and potentially dangerous actions to maximize their
objectives. For SORL agents with a single actor-critic pair, this results in large downtimes
which increases the learning costs. Alternatively, actor-critic pairs which are optimized to
minimize negative rewards (like enp) are too cautious, resulting in insufficient exploration,
lost opportunities for maximization, and therefore converge to non-optimal policies. How-
ever, since morl_offpolicy has two actor-critic pairs that influence the exploration policy from
two opposing directions (maximizing utility and minimizing downtimes), the final policy
is a compromise between them that checks the agent from committing extreme actions
that seem lucrative in the short term but are dangerous in the long run. Thus, even with
imperfect actors and critics, the agent can avoid unsafe/non-optimal state-action spaces.
Thus, with our method, the agent explores the state space in a safe manner and learns a
harder problem more efficiently than traditional methods.

J. Low Power Electron. Appl. 2022, 12, 53 27 of 33

Figure 19. morl_offpolicy (ω) learns greedy actor-critics that can tradeoff between sense and ENO
objectives using Algorithm 2.

Figure 20. morl_diff has learning costs comparable to other scalarization methods in spite of a harder
learning problem.

Figure 21. morl_offpolicy has lower learning costs compared to sense and enp. This is because the
opposing greedy actor-critics for MORL check each other from committing extreme actions.

J. Low Power Electron. Appl. 2022, 12, 53 28 of 33

7.3.2. 3-Objective MOO with Off-Policy MORL (Algorithm 2)

Finally, we consider the case of the dual-task EHWSN. Here, the MORL agent has to
learn policies that tradeoff between three objectives (maximizing sense-utility, maximizing
transmission-utility, and minimizing downtimes). The tradeoffs are made at each timestep
based on the user priority ω = (ωsense, ωtx, ωENP). We train the morl_multi agent using
Algorithm 2. We use the same discount factors for all tasks (to simplify analysis). The action
space is two-dimensional in this case and so the convex hull is a 2-D polygon from which
potentially optimal actions are sampled. During testing, we compare the performance of
morl_multi for different values of constant ω. We observe whether the results policies can
maximize the different objectives and tradeoff w.r.t. ω.

In Figure 22, we first observe how morl_multi trades off its energy neutrality with
changing ω. When energy neutrality has low priority (ωENP = 0.1, blue and orange),
the downtimes (bottom bar plot) are much higher than when ωENP = 0.7 (green and red).
As a result of this trade off, the corresponding utilities for ωENP = 0.1 are much higher
than that of ωENP = 0.7 (top and middle figures).

Secondly, we observe how the agent trades off between sense-utility and tx-utility. Let
us consider two cases where the ENO objective has the same preference i.e., ωENP = 0.1
(blue and orange). The blue line corresponds to a higher preference for sensing than for
transmission (i.e., ωsense > ωtx) and vice versa for the orange line. Thus, the blue line
scores higher in sense-utility than the orange line (top figure). However, it scores lower
in tx-utility compared to the orange line (middle figure). A similar observation can be
made when ωENP = 0.7 (green and red lines). This clearly demonstrates that morl_multi
can trade-off between its different objectives.

Thirdly, we analyze the tradeoff between sensing-utility and ENP. In the top figure of
Figure 22, we observe that as we progressively decrease the priority for sensing and increase
the priority for energy neutrality, the agent decreases its sense-utility and downtimes
correspondingly (blue → orange → green → red) i.e., it becomes more energy-neutral
at the expense of lower utility. A similar trend can be observed in the middle figure for
tx-utility (orange→ blue→ red→ green). However due to the concavity of the tx-utility,
there is a larger drop when the tx-priority ωtx is reduced from 0.7 to 0.2. The tradeoff
between sensing-utility and ENP is very clear when we observe the blue and red lines/bars.
Both the blue and red lines correspond to ωtx = 0.2 and so their tx-utility is very similar
(middle figure). However, the blue line corresponding to ωsense > ωENP has a much higher
sense-utility (see top figure) than the red line (ωsense < ωENP) at the expense of higher
downtimes (see bottom figure).

Finally, we discuss the learning costs for morl_multi shown in Figure 23. We observe
that it has an acceptable number of average downtimes (less than 15) during testing and
learning, which is competitive with previous methods [8]. This means that morl_multi
policies are stable, convergent, and energy neutral in spite of having to learn three different
greedy actor-critics within the same training period as previous methods. This is primarily
due to off-policy corrections in Algorithm 2 and safe exploration induced by safe actions as
well as auto-regulation among the greedy agents. Thus, our framework can learn to optimize
between three objectives successfully in dual-task EHWSNs, without a drastic increase in learning
costs, which indicates that it can be scaled to any number of tasks as required. With addi-
tional tasks, their convex hull formed by greedy actions will have correspondingly more
dimensions. This means that we will have to sample and evaluate more actions from this
hull which increases the computational requirements. One can compensate for this through
a more coarse-grained sampling of actions at the expense of fewer optimal solutions.

From the above observations and analysis, we show that our proposed MORL frame-
work for ENO of EHWSNs is not only feasible but also superior to previous methods. We
can learn more optimal policies with lower learning costs and tradeoffs at runtime. This
can be attributed to our more appropriate MDP formulation of the ENO problem. Also,
by compromising between compute-intensive MORL methods and elitist MC/EA methods,
our proposed MORL algorithms are a feasible solution for resource-constrained EHWSN.

J. Low Power Electron. Appl. 2022, 12, 53 29 of 33

Figure 22. morl_multi agent has lower downtimes when ENO has higher priority (green and red) than
when it is lower (blue and orange). Given the same ωENP, the agent trades off between sense-utility
and tx-utility using the values of ωsense and ωtx.

Figure 23. morl_multi has acceptable learning costs (slightly higher than sense) even though the
learning problem is much harder.

8. Conclusions and Future Directions

IoT embedded systems require MOO to coordinate and optimize its limited resource
among multiple tasks. Traditional heuristics (like MC roll-outs, EA) are unsuited for
this because they assume time-invariant objective functions whereas node-level MOO
generally requires time-varying objective functions. Other alternative methods either result
in non-optimal solutions or have very high computation costs making them unsuitable for
embedded systems.

We provide a MORL framework for MOO in IoT embedded devices in order to
overcome this problem. The framework is made up of general MOMDP and two low-
compute MORL algorithms. These algorithms offer a workable solution for resource-
constrained EHWSNs by falling somewhere between non-adaptive heuristics and compute-
intensive MORL approaches. With our proposed framework, embedded devices can learn
to make tradeoffs while maintaining reasonable learning costs. We use single-task and
dual-task EHWSNs as an example application and demonstrate MOO for ENO. We create
an appropriate MOMDP for the EHWSN system model and assess the performance of
our suggested algorithms. Our findings demonstrate that adopting our framework allows

J. Low Power Electron. Appl. 2022, 12, 53 30 of 33

for the run-time tradeoff of objectives and the learning of near-optimal policies at lower
learning costs.

Our MORL solution still needs to be improved to be implemented in IoT systems
with severe resource constraints. Since our framework can theoretically be applied to other
less compute-intensive RL algorithms, some alternatives to DDPG include using tabular
approaches [7,9], linear function approximation [6,11,50], or distributed learning [8]. In
our other paper [8], we show that inefficient exploration is one of the major causes of such
instability and propose a distributed RL method with novel ε-greedy exploration strategies
to not only minimize the learning time and computational costs. This is orthogonal to this
work and can be combined together to get more powerful policies at lower learning costs.

Another strategy to implement MORL NN models in IoT embedded devices would
be to compress the NN model. Recent works have shown that it is possible to compress a
large 16 GB ImageNet model and fit it into a micro-controller [77] without compromising
too much on accuracy and latency. Encouraging results have been reported in [78] where
the authors implement Deep RL to optimize the modulation scheme for software-defined
radio in real-time low-power hardware.

Author Contributions: Conceptualization, S.S.; methodology, S.S.; software, S.S.; validation, S.S.,
M.K., and H.N.; formal analysis, S.S.; investigation, S.S.; resources, S.S., M.K. and H.N.; data curation,
S.S.; writing—original draft preparation, S.S.; writing—review and editing, S.S., M.K., and H.N.;
visualization, S.S; supervision, M.K. and H.N.; project administration, M.K. and H.N.; funding
acquisition, S.S., M.K., and H.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partially supported by JST CREST Grant Number JPMJCR20F2 and JSPS
KAKENHI Grant Number 18J20946.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Yuan He for his valuable input and comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EHWSN Energy Harvesting Wireless Sensor Nodes
IoT Internet of Things
SoC System-on-Chips
ENO Energy Neutral Operation
ENP Energy Neutral Performance
MDP Markov Decision Process
RL Reinforcement Learning
DL Deep Learning
DRL Deep Reinforcement Learning
MORL Multi-Objective Reinforcement Learning
SORL Single-Objective Reinforcement Learning
MOO Multi-Objective Optimization
GA Genetic Algorithms
JMA Japan Meteorological Agency
WSN Wireless Sensor Network
MC Monte-Carlo
EA Evolutionary Algorithms
PSO Particle Swarm Optimization
QoS Quality of Service

J. Low Power Electron. Appl. 2022, 12, 53 31 of 33

References
1. Ma, D.; Lan, G.; Hassan, M.; Hu, W.; Das, S.K. Sensing, Computing, and Communications for Energy Harvesting IoTs: A Survey.

IEEE Commun. Surv. Tutor. 2019, 22, 1222–1250. [CrossRef]
2. Nakamura, Y.; Arakawa, Y.; Kanehira, T.; Fujiwara, M.; Yasumoto, K. Senstick: Comprehensive sensing platform with an ultra

tiny all-in-one sensor board for iot research. J. Sens. 2017, 2017, 6308302. [CrossRef]
3. Vamplew, P.; Yearwood, J.; Dazeley, R.; Berry, A. On the limitations of scalarisation for multi-objective reinforcement learning

of pareto fronts. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Auckland, New Zealand, 1–5
December 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 372–378.

4. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
5. Blasco, P.; Gunduz, D.; Dohler, M. A learning theoretic approach to energy harvesting communication system optimization. IEEE

Trans. Wirel. Commun. 2013, 12, 1872–1882. [CrossRef]
6. Ortiz, A.; Al-Shatri, H.; Li, X.; Weber, T.; Klein, A. Reinforcement learning for energy harvesting point-to-point communications.

In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016;
pp. 1–6.

7. Hsu, R.C.; Liu, C.T.; Wang, H.L. A reinforcement learning-based ToD provisioning dynamic power management for sustainable
operation of energy harvesting wireless sensor node. IEEE Trans. Emerg. Top. Comput. 2014, 2, 181–191. [CrossRef]

8. Shresthamali, S.; Kondo, M.; Nakamura, H. Power Management of Wireless Sensor Nodes with Coordinated Distributed
Reinforcement Learning. In Proceedings of the 2019 IEEE 37th International Conference on Computer Design (ICCD), Abu Dhabi,
United Arab Emirates, 17–20 November 2019; pp. 638–647.

9. Shresthamali, S.; Kondo, M.; Nakamura, H. Adaptive power management in solar energy harvesting sensor node using
reinforcement learning. ACM Trans. Embed. Comput. Syst. (TECS) 2017, 16, 181. [CrossRef]

10. Fraternali, F.; Balaji, B.; Agarwal, Y.; Gupta, R.K. ACES–Automatic Configuration of Energy Harvesting Sensors with Reinforce-
ment Learning. arXiv 2019, arXiv:1909.01968.

11. Sawaguchi, S.; Christmann, J.F.; Lesecq, S. Highly adaptive linear actor-critic for lightweight energy-harvesting IoT applications.
J. Low Power Electron. Appl. 2021, 11, 17. [CrossRef]

12. Parisi, S.; Pirotta, M.; Smacchia, N.; Bascetta, L.; Restelli, M. Policy gradient approaches for multi-objective sequential decision
making. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014;
pp. 2323–2330.

13. Pirotta, M.; Parisi, S.; Restelli, M. Multi-objective reinforcement learning with continuous pareto frontier approximation. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.

14. Yang, R.; Sun, X.; Narasimhan, K. A generalized algorithm for multi-objective reinforcement learning and policy adaptation.
In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019;
pp. 14636–14647.

15. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529. [CrossRef]

16. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484. [CrossRef]

17. Sudevalayam, S.; Kulkarni, P. Energy harvesting sensor nodes: Survey and implications. IEEE Commun. Surv. Tutor. 2011,
13, 443–461. [CrossRef]

18. Kansal, A.; Hsu, J.; Zahedi, S.; Srivastava, M.B. Power management in energy harvesting sensor networks. ACM Trans. Embed.
Comput. Syst. 2007, 6, 32. [CrossRef]

19. Shresthamali, S.; Kondo, M.; Nakamura, H. Multi-objective Reinforcement Learning for Energy Harvesting Wireless Sensor
Nodes. In Proceedings of the 2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC), Singapore, 20–23 December 2021; pp. 98–105.

20. Vigorito, C.M.; Ganesan, D.; Barto, A.G. Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In
Proceedings of the 2007 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks, San Francisco, CA, USA, 18–21 June 2007; pp. 21–30.

21. Sharma, V.; Mukherji, U.; Joseph, V.; Gupta, S. Optimal energy management policies for energy harvesting sensor nodes. IEEE
Trans. Wirel. Commun. 2010, 9, 1326–1336. [CrossRef]

22. Ozel, O.; Tutuncuoglu, K.; Yang, J.; Ulukus, S.; Yener, A. Transmission with energy harvesting nodes in fading wireless channels:
Optimal policies. IEEE J. Sel. Areas Commun. 2011, 29, 1732–1743. [CrossRef]

23. Peng, S.; Low, C. Prediction free energy neutral power management for energy harvesting wireless sensor nodes. Ad Hoc Netw.
2014, 13, 351–367. [CrossRef]

24. Cionca, V.; McGibney, A.; Rea, S. MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices.
IEEE Internet Things J. 2018, 5, 5132–5140. [CrossRef]

25. Jia, R.; Zhang, J.; Liu, X.Y.; Liu, P.; Fu, L.; Wang, X. Optimal Rate Control for Energy-Harvesting Systems with Random Data and
Energy Arrivals. ACM Trans. Sens. Netw. 2019, 15, 13. [CrossRef]

26. Fu, A.; Modiano, E.; Tsitsiklis, J.N. Optimal transmission scheduling over a fading channel with energy and deadline constraints.
IEEE Trans. Wirel. Commun. 2006, 5, 630–641. [CrossRef]

http://doi.org/10.1109/COMST.2019.2962526
http://dx.doi.org/10.1155/2017/6308302
http://dx.doi.org/10.1109/TWC.2013.030413.121120
http://dx.doi.org/10.1109/TETC.2014.2316518
http://dx.doi.org/10.1145/3126495
http://dx.doi.org/10.3390/jlpea11020017
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1109/SURV.2011.060710.00094
http://dx.doi.org/10.1145/1274858.1274870
http://dx.doi.org/10.1109/TWC.2010.04.080749
http://dx.doi.org/10.1109/JSAC.2011.110921
http://dx.doi.org/10.1016/j.adhoc.2013.08.015
http://dx.doi.org/10.1109/JIOT.2018.2866615
http://dx.doi.org/10.1145/3293535
http://dx.doi.org/10.1109/TWC.2006.1611093

J. Low Power Electron. Appl. 2022, 12, 53 32 of 33

27. Lei, L.; Kuang, Y.; Shen, X.S.; Yang, K.; Qiao, J.; Zhong, Z. Optimal reliability in energy harvesting industrial wireless sensor
networks. IEEE Trans. Wirel. Commun. 2016, 15, 5399–5413. [CrossRef]

28. Buchli, B.; Sutton, F.; Beutel, J.; Thiele, L. Dynamic power management for long-term energy neutral operation of solar energy
harvesting systems. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, Memphis, TN, USA,
3–6 November 2014; pp. 31–45.

29. Geissdoerfer, K.; Jurdak, R.; Kusy, B.; Zimmerling, M. Getting more out of energy-harvesting systems: Energy management
under time-varying utility with PreAct. In Proceedings of the 18th International Conference on Information Processing in Sensor
Networks, Montreal, QC, Canada, 16–18 April 2019; pp. 109–120.

30. Mao, S.; Cheung, M.H.; Wong, V.W. Joint energy allocation for sensing and transmission in rechargeable wireless sensor networks.
IEEE Trans. Veh. Technol. 2014, 63, 2862–2875. [CrossRef]

31. GhasemAghaei, R.; Rahman, M.A.; Gueaieb, W.; El Saddik, A. Ant colony-based reinforcement learning algorithm for routing in
wireless sensor networks. In Proceedings of the Instrumentation and Measurement Technology Conference Proceedings, IMTC
2007, Warsaw, Poland, 1–3 May 2007; pp. 1–6.

32. Blasco, P.; Gündüz, D. Multi-access communications with energy harvesting: A multi-armed bandit model and the optimality of
the myopic policy. IEEE J. Sel. Areas Commun. 2015, 33, 585–597. [CrossRef]

33. Chan, W.H.R.; Zhang, P.; Nevat, I.; Nagarajan, S.G.; Valera, A.C.; Tan, H.X.; Gautam, N. Adaptive duty cycling in sensor networks
with energy harvesting using continuous-time Markov chain and fluid models. IEEE J. Sel. Areas Commun. 2015, 33, 2687–2700.
[CrossRef]

34. Xiao, Y.; Han, Z.; Niyato, D.; Yuen, C. Bayesian reinforcement learning for energy harvesting communication systems with
uncertainty. In Proceedings of the Communications (ICC), 2015 IEEE International Conference on, London, UK, 8–12 June 2015;
pp. 5398–5403.

35. Mihaylov, M.; Tuyls, K.; Nowé, A. Decentralized learning in wireless sensor networks. In Proceedings of the International
Workshop on Adaptive and Learning Agents, Budapest, Hungary, 12 May 2009; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 60–73.

36. Hsu, J.; Zahedi, S.; Kansal, A.; Srivastava, M.; Raghunathan, V. Adaptive duty cycling for energy harvesting systems. In
Proceedings of the 2006 ISLPED, Bavaria, Germany, 4–6 October 2006; pp. 180–185.

37. OpenAI. Faulty Reward Functions in the Wild. 2020. Available online: https://openai.com/blog/faulty-reward-functions/
(accessed on 4 July 2020).

38. DeepMind. Designing Agent Incentives to Avoid Reward Tampering. 2020. Available online: https://deepmindsafetyresearch.
medium.com/designing-agent-incentives-to-avoid-reward-tampering-4380c1bb6cd (accessed on 4 July 2020).

39. Everitt, T.; Hutter, M. Reward Tampering Problems and Solutions in Reinforcement Learning: A Causal Influence Diagram
Perspective. arXiv 2019, arXiv:1908.04734.

40. Xu, Y.; Lee, H.G.; Tan, Y.; Wu, Y.; Chen, X.; Liang, L.; Qiao, L.; Liu, D. Tumbler: Energy Efficient Task Scheduling for Dual-Channel
Solar-Powered Sensor Nodes. In Proceedings of the 56th Annual Design Automation Conference 2019 (DAC’19), Las Vegas, NV,
USA, 2–6 June 2019; ACM: New York, NY, USA, 2019; pp. 172:1–172:6. [CrossRef]

41. Gai, K.; Qiu, M. Optimal resource allocation using reinforcement learning for IoT content-centric services. Appl. Soft Comput.
2018, 70, 12–21. [CrossRef]

42. Xu, Y.; Lee, H.G.; Chen, X.; Peng, B.; Liu, D.; Liang, L. Puppet: Energy Efficient Task Mapping For Storage-Less and Converter-Less
Solar-Powered Non-Volatile Sensor Nodes. In Proceedings of the 2018 IEEE 36th International Conference on Computer Design
(ICCD), Orlando, FL, USA, 7–10 October 2018; pp. 226–233.

43. Dias, G.M.; Nurchis, M.; Bellalta, B. Adapting sampling interval of sensor networks using on-line reinforcement learning.
In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016;
pp. 460–465.

44. Murad, A.; Kraemer, F.A.; Bach, K.; Taylor, G. Autonomous Management of Energy-Harvesting IoT Nodes Using Deep
Reinforcement Learning. arXiv 2019, arXiv:1905.04181.

45. Ortiz Jimenez, A.P. Optimization and Learning Approaches for Energy Harvesting Wireless Communication Systems. Ph.D.
Thesis, Technische Universität, Darmstadt, Germany, 2019.

46. Qiu, C.; Hu, Y.; Chen, Y.; Zeng, B. Deep deterministic policy gradient (DDPG)-based energy harvesting wireless communications.
IEEE Internet Things J. 2019, 6, 8577–8588. [CrossRef]

47. Kim, H.; Shin, W.; Yang, H.; Lee, N.; Lee, J. Rate Maximization with Reinforcement Learning for Time-Varying Energy Harvesting
Broadcast Channels. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Big Island, HI, USA,
9–13 December 2019; pp. 1–6.

48. Van Huynh, N.; Hoang, D.T.; Nguyen, D.N.; Dutkiewicz, E.; Niyato, D.; Wang, P. Optimal and Low-Complexity Dynamic
Spectrum Access for RF-Powered Ambient Backscatter System with Online Reinforcement Learning. IEEE Trans. Commun. 2019,
67, 5736–5752. [CrossRef]

49. Long, J.; Büyüköztürk, O. Collaborative duty cycling strategies in energy harvesting sensor networks. Comput. Aided Civ.
Infrastruct. Eng. 2020, 35, 534–548. [CrossRef]

50. Aoudia, F.A.; Gautier, M.; Berder, O. RLMan: An energy manager based on reinforcement learning for energy harvesting wireless
sensor networks. IEEE Trans. Green Commun. Netw. 2018, 2, 408–417. [CrossRef]

http://dx.doi.org/10.1109/TWC.2016.2558146
http://dx.doi.org/10.1109/TVT.2013.2295603
http://dx.doi.org/10.1109/JSAC.2015.2391852
http://dx.doi.org/10.1109/JSAC.2015.2478717
 https://openai.com/blog/faulty-reward-functions/
 https://deepmindsafetyresearch.medium.com/designing-agent-incentives-to-avoid-reward-tampering-4380c1bb6cd
 https://deepmindsafetyresearch.medium.com/designing-agent-incentives-to-avoid-reward-tampering-4380c1bb6cd
http://dx.doi.org/10.1145/3316781.3317927
http://dx.doi.org/10.1016/j.asoc.2018.03.056
http://dx.doi.org/10.1109/JIOT.2019.2921159
http://dx.doi.org/10.1109/TCOMM.2019.2913871
http://dx.doi.org/10.1111/mice.12522
http://dx.doi.org/10.1109/TGCN.2018.2801725

J. Low Power Electron. Appl. 2022, 12, 53 33 of 33

51. Ferreira, P.V.R.; Paffenroth, R.; Wyglinski, A.M.; Hackett, T.M.; Bilén, S.G.; Reinhart, R.C.; Mortensen, D.J. Multiobjective
reinforcement learning for cognitive satellite communications using deep neural network ensembles. IEEE J. Sel. Areas Commun.
2018, 36, 1030–1041. [CrossRef]

52. Rioual, Y.; Le Moullec, Y.; Laurent, J.; Khan, M.I.; Diguet, J.P. Reward Function Evaluation in a Reinforcement Learning Approach
for Energy Management. In Proceedings of the 2018 16th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 8–10
October 2018; pp. 1–4.

53. Liu, C.; Xu, X.; Hu, D. Multiobjective reinforcement learning: A comprehensive overview. IEEE Trans. Syst. Man, Cybern. Syst.
2014, 45, 385–398.

54. Zeng, F.; Zong, Q.; Sun, Z.; Dou, L. Self-adaptive multi-objective optimization method design based on agent reinforcement
learning for elevator group control systems. In Proceedings of the 2010 8th World Congress on Intelligent Control and Automation,
Jinan, China, 6–9 July 2010; pp. 2577–2582.

55. Ngai, D.C.K.; Yung, N.H.C. A multiple-goal reinforcement learning method for complex vehicle overtaking maneuvers. IEEE
Trans. Intell. Transp. Syst. 2011, 12, 509–522. [CrossRef]

56. Moffaert, K.V.; Nowé, A. Multi-Objective Reinforcement Learning using Sets of Pareto Dominating Policies. J. Mach. Learn. Res.
2014, 15, 3663–3692.

57. Shelton, C.R. Importance Sampling for Reinforcement Learning with Multiple Objectives. Ph.D. Thesis, MIT, Cambridge, MA,
USA, 2001.

58. Li, K.; Zhang, T.; Wang, R. Deep reinforcement learning for multiobjective optimization. IEEE Trans. Cybern. 2020, 51, 3103–3114.
[CrossRef] [PubMed]

59. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

60. Yang, Z.; Merrick, K.E.; Abbass, H.A.; Jin, L. Multi-Task Deep Reinforcement Learning for Continuous Action Control. In
Proceedings of the IJCAI, Melbourne, Australia, 19–25 August 2017; pp. 3301–3307.

61. Li, C.; Czarnecki, K. Urban Driving with Multi-Objective Deep Reinforcement Learning. arXiv 2019, arXiv:1811.08586.
62. Sharma, M.K.; Zappone, A.; Assaad, M.; Debbah, M.; Vassilaras, S. Distributed power control for large energy harvesting

networks: A multi-agent deep reinforcement learning approach. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 1140–1154. [CrossRef]
63. Ortiz, A.; Al-Shatri, H.; Weber, T.; Klein, A. Multi-Agent Reinforcement Learning for Energy Harvesting Two-Hop Communica-

tions with a Partially Observable State. arXiv 2017, arXiv:1702.06185.
64. Jia, J.; Chen, J.; Chang, G.; Tan, Z. Energy efficient coverage control in wireless sensor networks based on multi-objective genetic

algorithm. Comput. Math. Appl. 2009, 57, 1756–1766. [CrossRef]
65. Le Berre, M.; Hnaien, F.; Snoussi, H. Multi-objective optimization in wireless sensors networks. In Proceedings of the ICM 2011

Proceeding, Istanbul, Turkey, 13–15 April 2011; pp. 1–4.
66. Marks, M. A survey of multi-objective deployment in wireless sensor networks. J. Telecommun. Inf. Technol. 2010, 3, 36–41.
67. Fei, Z.; Li, B.; Yang, S.; Xing, C.; Chen, H.; Hanzo, L. A survey of multi-objective optimization in wireless sensor networks:

Metrics, algorithms, and open problems. IEEE Commun. Surv. Tutor. 2016, 19, 550–586. [CrossRef]
68. Iqbal, M.; Naeem, M.; Anpalagan, A.; Ahmed, A.; Azam, M. Wireless sensor network optimization: Multi-objective paradigm.

Sensors 2015, 15, 17572–17620. [CrossRef]
69. Konstantinidis, A.; Yang, K.; Zhang, Q. An evolutionary algorithm to a multi-objective deployment and power assignment

problem in wireless sensor networks. In Proceedings of the IEEE GLOBECOM 2008—2008 IEEE Global Telecommunications
Conference, New Orleans, LA, USA, 30 November–4 December 2008; pp. 1–6.

70. Ahmed, M.M.; Houssein, E.H.; Hassanien, A.E.; Taha, A.; Hassanien, E. Maximizing lifetime of large-scale wireless sensor
networks using multi-objective whale optimization algorithm. Telecommun. Syst. 2019, 72, 243–259. [CrossRef]

71. Jia, J.; Chen, J.; Chang, G.; Wen, Y.; Song, J. Multi-objective optimization for coverage control in wireless sensor network with
adjustable sensing radius. Comput. Math. Appl. 2009, 57, 1767–1775. [CrossRef]

72. Giardino, M.; Schwyn, D.; Ferri, B.; Ferri, A. Low-Overhead Reinforcement Learning-Based Power Management Using 2QoSM. J.
Low Power Electron. Appl. 2022, 12, 29. [CrossRef]

73. Japan Meteorological Agency. Japan Meteorological Agency. 2019. Available online: https://www.jma.go.jp/jma/menu/
menureport.html (accessed on 6 July 2019).

74. Libelium. Waspmote-The Sensor Platform to Develop IoT Projects. Available online: https://www.libelium.com/iot-products/
waspmote/ (accessed on 22 January 2021).

75. Fujimoto, S.; Meger, D.; Precup, D. Off-policy deep reinforcement learning without exploration. In Proceedings of the International
Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 2052–2062.

76. Kumar, A.; Fu, J.; Tucker, G.; Levine, S. Stabilizing off-policy q-learning via bootstrapping error reduction. arXiv 2019,
arXiv:1906.00949.

77. Lin, J.; Chen, W.M.; Lin, Y.; Cohn, J.; Gan, C.; Han, S. Mcunet: Tiny deep learning on iot devices. arXiv 2020, arXiv:2007.10319.
78. Restuccia, F.; Melodia, T. DeepWiERL: Bringing Deep Reinforcement Learning to the Internet of Self-Adaptive Things. In

Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020;
pp. 844–853.

http://dx.doi.org/10.1109/JSAC.2018.2832820
http://dx.doi.org/10.1109/TITS.2011.2106158
http://dx.doi.org/10.1109/TCYB.2020.2977661
http://www.ncbi.nlm.nih.gov/pubmed/32191907
http://dx.doi.org/10.1109/TCCN.2019.2949589
http://dx.doi.org/10.1016/j.camwa.2008.10.036
http://dx.doi.org/10.1109/COMST.2016.2610578
http://dx.doi.org/10.3390/s150717572
http://dx.doi.org/10.1007/s11235-019-00559-7
http://dx.doi.org/10.1016/j.camwa.2008.10.037
http://dx.doi.org/10.3390/jlpea12020029
https://www.jma.go.jp/jma/menu/menureport.html
https://www.jma.go.jp/jma/menu/menureport.html
https://www.libelium.com/iot-products/waspmote/
https://www.libelium.com/iot-products/waspmote/

	Introduction
	Related Work
	Analytical Methods for ENO
	Single Objective RL Methods for ENO
	Multi-Objective Optimization Methods

	System Model
	Theoretical Background
	Single-Objective RL
	Multi-Objective RL

	Proposed MORL Framework
	MOMDP Formulation
	Runtime MORL
	MORL with Off-Policy Corrections

	Evaluation Setup
	Simulation Environment
	Utilities and Reward Functions
	Metrics

	Experimental Results
	Single-Objective RL Policies Using Proposed MDP
	Comparison with Heuristic Methods
	Adaptive Nature of RL Policies
	Superiority of Proposed MDP Formulation
	Effect of Size of NN

	Runtime Tradeoffs
	Limitations of Traditional Scalarization Methods
	Trading Off with Runtime MORL (Algorithm 1)

	Learning Multi-Objective RL Policies for ENO
	2-Objective MOO with Off-Policy MORL (Algorithm 2)
	3-Objective MOO with Off-Policy MORL (Algorithm 2)

	Conclusions and Future Directions
	References

