
FAWS: Fault-Aware Weight Scheduler for 
DNN Computations in 
Heterogeneous and Faulty Hardware

Shaswot Shresthamali, Yuan He, Masaaki Kondo

Kondo Laboratory

Keio University

ISPA 2022

Melbourne (Virtual)

17-19 Dec 2022



(Faulty) DNN Accelerators

• Accelerators consist of 
many (possible faulty) 
Processing Elements (PEs)

• Faulty operation may be 
due to
• Marginal Operation

• Manufacturing Defects

• Degradation with age

2

h
tt

p
s:

//
m

o
re

th
an

m
o

o
re

.s
u

b
st

ac
k.

co
m

/p
/t

es
la

s-
d

o
jo

-s
u

p
er

co
m

p
u

te
r-

d
ee

p
-d

iv
e

h
tt

p
s:

//
d

ev
el

o
p

er
.n

vi
d

ia
.c

o
m

/b
lo

g/
n

vi
d

ia
-a

m
p

er
e-

ar
ch

it
ec

tu
re

-i
n

-d
ep

th
/

Tesla Dojo D1 has 354 PEs per chip

NVIDIA GA100 with 128 SMs. Each SM has multiple 
CUDA cores with INT32, FP32 an FP64 capabilities

The Cerebras Wafer Scale 
Engine has 400,000 AI-
optimized compute cores 
in one large chip

h
tt

p
s:

//
w

w
w

.c
e

re
b

ra
s.

n
e

t/
b

lo
g/

ce
re

b
ra

s-
w

af
er

-s
ca

le
-

en
gi

n
e

-w
h

y-
w

e-
n

ee
d

-b
ig

-c
h

ip
s-

fo
r-

d
ee

p
-l

e
ar

n
in

g/

Eyeriss – 168 PEs  per chip
Chen, Yu-Hsin, et al. "Eyeriss: An energy-
efficient reconfigurable accelerator for deep 
convolutional neural networks." IEEE journal of 
solid-state circuits 52.1 (2016): 127-138.



DNNs are resilient to computational errors

• DNNs have overprovisioned parameters

• Computations within a layer are 
• independent
• distributed 
• parallel

• DNNs degrade gracefully with increasing error 
probabilities

• Some degradation of model accuracy is tolerable 
in order to extract
• higher energy efficiency (lower Vdd)
• lower latency (reduced precision)
• E.g., Approximate computing

• Approximate arithmetic – e.g., linear approximations
• Approximate hardware – e.g., reduced precision 3

Reagen et al. - 2016 - Minerva Enabling Low-Power, Highly-
Accurate Deep Neural Network Accelerators



Related Works

• Approach: Leverage DNN error-resilience for
• Power Savings
• Lower Latency/ Higher Throughput

• Voltage Scaling (MINERVA, ARES)
• Reduce SRAM voltage and increase Bit Error Rate (BER)
• Detect and correct errors in PEs (Processing Elements)

• Approximate Computing (AxNN, AxTrain, ApproxANN)
• Use inexact arithmetic for low priority neurons
• Requires neuron sensitivity analysis and retraining

• Reduced/mixed precision computation (HAQ, RAPiD)
• Use hardware-in-loop optimization method
• Specialized accelerator architecture for mixed precision 4



Limitations of previous approaches

• Previous works focus on analyzing neuron sensitivity 
• Allocate non-critical neurons to compromised hardware [AxNN, 

AxTrain, ApproxANN]
• Use model-specific/hardware-specific optimizations [HAQ, RAPiD]

• A neuron is a computational concept.

• In reality, neurons (computations) are spread out among many 
PEs during parallelization
• One neuron is computed using multiple PEs
• A PE maybe reused for computation of multiple neurons
• One-to-one mapping between computations and PEs does not exist. 

• Unimportant computations need to be scheduled to 
compromised hardware
• Without interfering with accelerator optimizations – cache 

misses/shared memory/banking conflicts etc.. 5

https://developer.nvidia.com/blog/cutlass-linear-
algebra-cuda/

One sub-matrix 
block is 
computed by 
many CUDA 
cores



Motivation

• Trained DNN models are deployed in various hardware accelerator platforms
• Edge devices in IoT systems
• Different accelerator types – GPUs, TPUs etc.

• Hardware platforms have different fault profiles that degrade performance
• Fault profile – where do faults occur in the hardware with what probability

• Recovering performance by retraining, reoptimizing is not practical
• Lack of access to training data, computation resources
• Too many variations

• We need a general method to reschedule computations (for performance 
recovery) that
• treats DNN as a black box (model agnostic)
• is independent of accelerator hardware (hardware agnostic) 6



Fault-Aware Weight Scheduler (FAWS)

7

FAWS



Proposed Solution: FAWS

• Focus is only on DNN inference (for now)

• Schedule important computations in reliable hardware by shuffling the rows of 
the matrix during multiplication

• 𝑛 rows → 𝑛! permutations [search space is too large]
• Use GA (Genetic Algorithm) to find a good shuffling order

8

Inference 
involves many 

matrix 
multiplications

FAWS can recover 
significant 
accuracy  even 
with faulty 
hardware

Naïve Scheduling in faulty hardware 
causes severe  degradation.

FAWS shuffles the matrix rows. 
Shuffling order is found using GA.



NVIDIA A100 Tensor Core GPU Architecture v1.0

Modeling Hardware Faults

• Flip-to-0/1: a random exponent bit is stuck at 
either 0 or 1
• Due to permanent damage e.g., shorts/opens

• Bitflip: the value of a random exponent bit is 
flipped.
• intermittent faults due to timing delays, crosstalk, 

marginal operation

• Reduced Precision: some blocks of mantissa bit 
are 
zeroed out
• TF32 datatype
• BF16 datatype 9

We simulate faults using bit-level error injection during 
inference computation

N
V

ID
IA

 A
1

0
0

 Ten
so

r C
o

re G
P

U
 A

rch
itectu

re v1
.0

Streaming Multiprocessor (SM)

Assuming faults 
occur in SRAM of 
CUDA cores of an 
NVIDIA GPU



Fault Simulation Methodology

• Each CUDA core has a fixed fault 
probability/rate (FR).

• A fault profile of a GPU 
determines the fault rate of 
each of its CUDA cores.

• At each instant in time, a CUDA 
core is sampled as either faulty 
or not-faulty by binomial 
sampling from the fault profile 
probability distribution

10



GA Problem Statement

• Given a hardware fault-profile, 
• what is the best shuffling order for the rows of the weight matrix so that the performance 

degradation is minimized

• GA method
• Chromosome: represents the row shuffle order

• Mutation/Crossover: different row shuffle orders

• Fitness Function: top-1 accuracy over the test dataset

11

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9

NN Weights

After shufflingSc
h

ed
u

le
d

 
C

U
D

A
 c

o
re

s

Before shuffling



Putting it all together: FAWS + GA + Fault Injection



Putting it all together: FAWS + GA + Fault Injection



Putting it all together: FAWS + GA + Fault Injection



Putting it all together: FAWS + GA + Fault Injection



Putting it all together: FAWS + GA + Fault Injection



Experiments and Results

17



Experimental Setup

• DNN Models and Dataset
• mnist32-cnn using MNIST Dataset

• One conv layer followed by three fully-connected hidden layers

• fashion-cnn using Fashion-MNIST Dataset
• Two conv layers followed by one fully-connected hidden layer

• Assuming GPU has 20 SMs
• Each SM has 32 CUDA Cores

• Fault profiles are randomly generated

• Max Fault Rates
• 1E-3, 2E-3, 5E-3
• 100E-3, 200E-3, 500E-3

18

https://www.tensorflow.org/da
tasets/catalog/mnist

https://www.tensorflow.org/da
tasets/catalog/fashion_mnist



mnist32-cnn: Fault sensitivity (Bitwise Errors)

19

• Graceful degradation with 
increasing bit error rate

• conv layer c0 is the most sensitive
• Due to high reuse

• Can we recover performance 
using HAS on c0?



mnist32-cnn: Recovery with FAWS (Bitwise Errors)

20

Yes FAWS can! Reagen et al. - 2016 - Minerva Enabling Low-Power, Highly-Accurate 
Deep Neural Network Accelerators

Lowering supply 
voltages for BER of 5E-3 

can give us more than 
50% power savings

•Upto 50% power savings!
• Recovery of up to 30% points!
•With almost no computation overhead!



mnist32-cnn: Fault sensitivity (Mantissa Errors)

21

• Flip-to-zero is not that critical
• Suppressed activations are mostly benign

• Precision can be reduced aggressively!
• HAQ, RAPiD

• Output layer op is most sensitive to 
reduced precision
• Softmax function requires high precision

• Degradation in each layer has a cumulative 
effect!

• Use FAWS on h2 and op layers



mnist32-cnn: Recovery with FAWS (Mantissa Errors)

22

• Recovery of ~5% points

• Greater recovery in op layer

• In our simulation precision is 
reduced randomly
• Harder optimization problem

• In reality
• More deterministic and 

controlled mixed precision 
schemes

• May result in better recovery



Conclusions and Future Directions

• Accelerators are faulty

• DNN can tolerate some computation 
inexactness

• We propose FAWS so that 
unimportant computations are 
scheduled to compromised hardware
• Achieved by shuffling rows
• Best shuffling order is found using GA

• FAWS can recover up to 30% points of 
performance
• Corresponds to large power savings

• FAWS is hardware-agnostic black-box 
optimization process – general, simple 
and cheap to implement

23

• GA hyperparameters can be 
tuned for faster convergence
• Different mutation rates/ no. of 

generations for different 
hardware/models

• Can we use faulty hardware for 
training?

• Can we optimize FAWS
dynamically depending upon the 
input to the model?



REFERENCES
• Reagen, Brandon, et al. "Minerva: Enabling low-power, highly-accurate deep neural network 

accelerators." 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). 
IEEE, 2016.

• Reagen, Brandon, et al. "Ares: A framework for quantifying the resilience of deep neural networks." 2018 
55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018.

• Venkataramani, Swagath, et al. "AxNN: Energy-efficient neuromorphic systems using approximate 
computing." 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED). 
IEEE, 2014.

• He, Xin, et al. "AxTrain: Hardware-oriented neural network training for approximate 
inference." Proceedings of the International Symposium on Low Power Electronics and Design. 2018.

• Zhang, Qian, et al. "ApproxANN: An approximate computing framework for artificial neural 
network." 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2015.

• Wang, Kuan, et al. "Haq: Hardware-aware automated quantization with mixed precision." Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

• Venkataramani, Swagath, et al. "RaPiD: AI accelerator for ultra-low precision training and 
inference." 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). 
IEEE, 2021.

24



25

Masaaki KONDO
https://www.acsl.ics.keio.ac.jp/

Shaswot SHRESTHAMALI
https://www.acsl.ics.keio.ac.jp/

www.shaswot.com

Yuan HE
https://www.acsl.ics.keio.ac.jp/

https://www.acsl.ics.keio.ac.jp/
https://www.acsl.ics.keio.ac.jp/
http://www.shaswot.com/
https://www.acsl.ics.keio.ac.jp/


Thank You

Your questions/comments and feedback are 
most welcome


	Default Section
	Slide 1: FAWS: Fault-Aware Weight Scheduler for  DNN Computations in  Heterogeneous and Faulty Hardware

	Introduction
	Slide 2: (Faulty) DNN Accelerators
	Slide 3: DNNs are resilient to computational errors
	Slide 4: Related Works
	Slide 5: Limitations of previous approaches
	Slide 6: Motivation

	FAWS
	Slide 7: Fault-Aware Weight Scheduler (FAWS)
	Slide 8: Proposed Solution: FAWS
	Slide 9: Modeling Hardware Faults
	Slide 10: Fault Simulation Methodology
	Slide 11: GA Problem Statement

	FAWS Animation
	Slide 12: Putting it all together: FAWS + GA + Fault Injection
	Slide 13: Putting it all together: FAWS + GA + Fault Injection
	Slide 14: Putting it all together: FAWS + GA + Fault Injection
	Slide 15: Putting it all together: FAWS + GA + Fault Injection
	Slide 16: Putting it all together: FAWS + GA + Fault Injection

	Experiments and Results
	Slide 17: Experiments and Results
	Slide 18: Experimental Setup

	mnist32
	Slide 19: mnist32-cnn: Fault sensitivity (Bitwise Errors)
	Slide 20: mnist32-cnn: Recovery with FAWS (Bitwise Errors)
	Slide 21: mnist32-cnn: Fault sensitivity (Mantissa Errors)
	Slide 22: mnist32-cnn: Recovery with FAWS (Mantissa Errors)

	Conclusion
	Slide 23: Conclusions and Future Directions
	Slide 24: REFERENCES
	Slide 25
	Slide 26


