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Abstract—The idea of using inexact computation for overprovi-
sioned DNNs (Deep Neural Networks) to decrease power and la-
tency at the cost of minor accuracy degradation has become very
popular. However, there is still no general method to schedule
DNN computations on a given hardware platform to effectively
implement this idea without loss in computational efficiency.
Most contemporary methods require specialized hardware, ex-
tensive retraining and hardware-specific scheduling schemes. We
present FAWS: Fault-Aware Weight Scheduler for scheduling DNN
computations in heterogeneous and faulty hardware. Given a
trained DNN model and a hardware fault profile, our scheduler
is able to recover significant accuracy during inference even at
high fault rates. FAWS schedules the computations such that
the low priority ones are allocated to inexact hardware. This
is achieved by shuffling (exchanging) the rows of the matrices.
The best shuffling order for a given DNN model and hardware
fault profile is determined using Genetic Algorithms (GA). We
simulate bitwise errors on different model architectures and
datasets with different types of fault profiles and observe that
FAWS can recover up to 30% of classification accuracy even at
high fault rates (which correspond to approximately 50% power
savings).

I. INTRODUCTION

Owing to the popularity of Deep Neural Networks (DNNs),
specialized accelerator hardware (such as GPUs, TPUs and
FPGAs) have become very popular to overcome the resource
constraints (e.g., power, computation) in real world applica-
tions. DNN computations are embarrassingly parallel so the
current trend is to have a large number of parallel Processing
Elements (PEs) that operate in SIMD mode. For e.g., NVIDIA
GPUs contain CUDA cores/threads grouped in Streaming
Multiprocessor (SM) blocks and FPGAs have Deep Learning
Processing Units (DPUs) consisting of hybrid PEs.

Contemporary DNN accelerators have densely packed
chips/chiplets in various novel architectural organizations (e.g.,
SambaNova’s Datascale Systems, Cerebras’s Wafer-Scale En-
gine (WSE), Tesla’s Dojo D1 etc.). However, with current
nanometer scale process technologies, yield and reliability are
drastically reduced. Disposing entire chips due to the presence
of a few faulty PEs is impractical. Adding error correction
mechanisms and redundancies to maintain worst-case margins
increases power and cost. In addition, chips also degrade with
time and external factors causing some PEs to be more faulty

than others. Therefore we cannot assume accelerators to be
perfectly reliable all the time.

Fig. 1: DNN models deployed in the field are implemented in
different (compromised) hardware configurations that tradeoff
efficiency for inexact computation. FAWS schedules the DNN
computations by shuffling rows to recover performance.

Motivation: Although accelerators maybe unreliable,
DNNs have inherent algorithmic resilience to computational
errors on account of their distributed parallel nature and
over-provisioned parameters. They have been shown to be
fault tolerant to Bit Error Rates (BERs) as high as 10−4 (in
contrast to conventional systems that require BERs in the order
of 10−15) [1], [2]. Researchers have cleverly leveraged this
resiliency of DNNs to salvage DNN performance even with
faulty hardware. By relaxing computational exactness, they
have increased energy efficiency and reduced computational
memory/latency at the cost of minor performance degradation.
There is still room for substantial gains with aggressive
voltage underscaling in SRAMs [1] and DPUs [3] as well
as using reduced precision [4], [5] if the effects of resulting
performance degradation can be minimized.

The general method for recovering performance is to first
identify unimportant neurons and then schedule them on
compromised hardware. 1 While studying the sensitivity of
neurons to computational errors is interesting, it does not help

1We use the term“compromised hardware” as an umbrella term to indicate
hardware that is faulty either due to manufacturing defects, marginal operation
or reduced precision.



very much when implementing DNNs on accelerators. This
is because optimized code used in many Deep Learning (DL)
framework breaks the conceptual one-to-one mapping between
a neuron and its computations. For e.g., in the case of GPUs,
the computations corresponding to a neuron is actually spread
out across multiple CUDA threads to maximize throughput.
This is achieved by block-tiling methods used widely in
GEMM (General Matrix Multiply) libraries. As a result, many
CUDA cores participate in the calculation of one neuron and
CUDA cores are reused extensively by different neurons. The
scheduling therefore must focus on allocating unimportant
computations (not neurons) on compromised hardware. Thus,
scheduling DNN computation in compromised hardware be-
comes very difficult (due to the resulting large combinatorial
optimization search space). Current solutions are applicable
only to very specific DNN models/hardware platforms [5]–
[8] and usually involve extensive retraining. Given the variety
of DNN models, accelerators and types of fault profiles, it is
important to schedule computations on compromised hardware
without relying on internal microarchitectural details of the
hardware (which is usually not known to the user). Retraining
the model is also not usually possible once the hardware is
deployed and the dataset may not be easily available.

Proposal: We propose FAWS: Fault-Aware Weight Sched-
uler to schedule DNN computations in compromised hardware
to reduce the effect of faults and recover model performance.
FAWS achieves this by shuffling the rows of the matrices
during multiplication Figure 1. This gives it some control over
where the computations are allocated in the hardware. FAWS
uses Genetic Algorithm (GA) to search the huge optimization
space for the best shuffling order such that the majority of the
critical operations are assigned to robust computation units.
Row-shuffling, while simple, is a general methodology for
performance recovery that treats the DNN model as a black
box. It does not alter the semantics so code redesign in not
necessary. Neither does it interfere with the optimized dataflow
graphs specific to different microarchitectures. It also has
extremely low computational and time complexity and can
be applied to a vast variety of DNNs. This method does not
require information about the internal hardware details and no
retraining is required.

In this paper, we focus only on inference. Learning the
weights of a DNN model is a one-time cost that is performed
in a fault-free environment. Once trained, the same model
is reused many times over in different hardware platforms
with different fault profiles. The GA search to find a suitable
shuffle order for a given hardware configuration is also a
one-time cost and can be done offline. This requires a fault
injection simulator (like in [2]) and the hardware fault profile.
The hardware fault profile can be easily obtained before
deployment via diagnostic tests like those in [9]–[11] . Once
the fault profile is known, the GA search can be rerun offline
even if the model is updated.

This paper makes the following contributions:
• We develop FAWS that recovers lost performance of

DNN models on compromised hardware by allocating

unimportant computations to compromised PEs (Sec-
tion III). This is achieved by shuffling the rows of the
matrices during multiplication. The row shuffle order is
determined by GA search.

• We analyze the fault sensitivity of DNN models and their
layers to different fault types and fault rates using bit-
level fault injection (Section V-A).

• We determine the most suitable row shuffle orders by
using FAWS and recover significant performance (by as
much as 30%) from the DNNs in compromised hardware
(Section V-B).

II. RELATED WORK

In [12], the authors identify stuck-at and random bit flips as
the most widely and successfully used abstract fault models.
So we focus mainly on the errors caused by these faults in this
work. Our paper builds up on the work in [1]–[3]. In [2], the
authors propose a bitwise fault-injection framework for DNNs
to analyze the effect of fault-rate and performance degradation
on different DNN models. They show that is possible to lever-
age implicit fault tolerance properties of DNNs to improve
energy efficiency. In [1], this is demonstrated by lowering the
SRAM voltages to improve energy performance at the cost
of increasing fault rates. They also propose fault mitigation
techniques by setting faulty bits/words to zero. In [3] the
authors use undervolting in FPGA PEs to increase energy
efficiency and compensate for it with frequency underscaling.
The approximate computing community has also exploited
the fault-tolerance of DNNs by using low-power approximate
arithmetic hardware [7], [8]. In [6]–[8], the authors character-
ize neuron sensitivity and approximate low priority neurons.
The drop in performance is recovered by retraining the model.
This is not a general methodology and is not always possible
due to lack of access to datasets and computational resources.
DNNs can also be made more robust by pruning and dropout.
These solutions target individual neurons/weights, which as
discussed before, is not how hardware faults generally map
to the DNN computation. Our paper focuses on a bit-level
fault-model at computation level which is more realistic.

Another popular direction for reducing power and latency
has been to use reduced precision arithmetic. This is now
widely supported by many ML frameworks and libraries. In
[4], the authors propose an automated framework to determine
the bitwidth required for different computations in a DNN.
Their method uses a hardware-aware optimization loop to
specialize for different hardware configurations. Other works
such as [5] use specialized accelerator architectures with
reducible precision for maximizing throughput and minimizing
energy. Our work differs from [4], [5] in that it does not rely on
hardware details for optimization and is therefore applicable
to many different types of accelerators.

III. FAULT-AWARE WEIGHT SCHEDULER (FAWS)

A. Fault Models

A fault is defined as “an anomalous physical condi-
tion...which gives rise to an error” [12]. A fault may induce an



Fig. 2: Matrix-vector tiled multiplication is spread across two SM blocks and six CUDA cores. FAWS shuffles the rows of the
weight matrix, using the best genes from GA search. The most critical neuron/row (green) is allocated to the most robust cores
(C0 and C3). As a result, the corresponding element of the final product vector (dark green) is not affected by the faults. The
figure also illustrates our error-injection simulation strategy to simulate hardware faults.

error, which is a deviation of the logical state from the correct
one. Permanent faults are continuous and always present,
arising mostly due to irreversible physical damage. A transient
fault occurs for a short period of time mostly due to process
and environmental variations as well as degradation. Intermit-
tent faults, usually caused by marginal device operation, are
recurring transient faults and these are the most common. We
abstract the effects of these various faults using the following
bitwise fault model similar to [1], [2], [12]:

• Flip-to-0/1: a random register bit is held at either 0/1.
• Bitflip: the value of a random register bit is flipped.

The Flip-to-0/1 fault model represents many of the perma-
nent faults in hardware. The Bitflip fault models the transient
faults in PE SRAM registers/memory elements due to marginal
operation or external effects.

In addition to bitwise fault models, we also define a fault
model for mixed-precision computations. Strictly speaking,
reduced precision is not a result of an anomalous physical
condition, we can model it as a type of marginal operation. In
this work, we model reduced precision as a type of fault where
a block of the least significant bits of the mantissa are set to
zero. We use this fault model for no other reason than for
simplifying the description and analysis of our experiments.

B. Fault Injection Methodology

A bitwise fault model is much more realistic w.r.t. hardware
implementation than a neuron-wise model. We further only
consider faults that affect the intermediate computations of
DNNs and not the main memory elements that contain the
input data stream, weights and biases. The effects of errors
in the weights and biases in the main memory and their
mitigation have been addressed in [1], [2]. We assume that
the input, weights and biases are not corrupted. This way if
there is any degradation in model performance, it is solely due
to incorrect computation and not corrupt data.

1) Tiled Matrix Multiplication: We focus on the effects
of hardware faults on matrix multiplications because they
constitute the majority of the computations for DNNs. Ma-
trix multiplications consist of many multiply and accumulate
(MAC) operations that can be performed in parallel. For gen-
eral matrices, tiled matrix multiplication is preferred because
it maximizes parallelization and minimizes memory conflicts
by exploiting data locality. For instance, in NVIDIA GPUs,
large multiplying matrices are broken up into small tiles and
each tile is computed by a SM which consists of a warp
of 32 CUDA threads/cores. The partial products from each
of the blocks are summed together to give the final product.
This is why we cannot assume one-to-one mapping between
neurons and PEs for DNN accelerators. The calculation for one
neuron is performed by multiple PEs and each PE is reused
many times for different neurons (Figure 2). More details on
optimizing GEMM for GPUs can be found in [13].

We are interested in the effect of faulty behavior of the
CUDA cores in the SM blocks. Hence we simulate faults
by injecting errors separately into the partial products from
each SM block. This fault-injection methodology is illustrated
for the case of matrix-vector multiplication in Figure 2. Note
that injecting errors after the final matrix product has been
computed does not capture the faulty behavior of the CUDA
cores in the SMs.

In this work, we use GPU only for the sake of example. The
basic principle behind using tiled multiplication to distribute
the MAC operations among a vast array of PEs (similar to
CUDA cores) to maximize parallelization is applicable to most
accelerators (e.g., TPUs, FPGAs etc.).

2) Fault Profiles and Error Instances: In this work, we
assume the fault rate (FR) is the same as the error rate i.e.,
faults always result in errors. This is simply to make the
analysis straightforward and has no loss of generality during
analysis and experiments. We simulate faults in the GPU
hardware using a bitwise fault simulator similar to [2]. The



simulator injects errors into the computation executed by a
PE with a probability that is determined by its fault rate
(Figure 2). The fault profile of the accelerator (GPU) describes
the different fault rates of its PEs (CUDA cores). At each time
step, an error instance is sampled from the fault profile. The
error instance determines whether or not if a particular PE
is faulty. We assume the fault profile has been obtained via
diagnostic tests.

3) im2col Optimization: Naive implementation of the con-
volution operation is inefficient. It is also easily one of the
most compute intensive components of DNNs especially when
there are multiple kernels and channels. A popular approach
for implementing convolution operations is to flatten the kernel
matrices, extract patches of the images into columns (im2col)
and perform Multiple Channel Multiple Kernel (MCMK) con-
volution using existing GEMM libraries [14]. This decreases
the latency of the convolutional operation at the expense of
larger memory use. This method of convolution is the most
widely used and is present in many of the popular deep
learning frameworks. We assume convolution operations are
optimized using im2col method and implemented as GEMM.
Thus fault injection in convolution operation is similar to that
for matrix-matrix/vector multiplications.

C. GA Problem Statement for FAWS

The main objective of FAWS is to achieve better scheduling
of computation in faulty hardware to recover lost performance.
FAWS achieves this by shuffling the matrix rows before multi-
plication. After computation, it “reshuffles” the rows of the
product back to the original order after so that the math-
ematical semantics are preserved. By permuting (shuffling)
the order of the rows, we get some (limited) control over
where these computation take place within the accelerator. The
number of possible ways in which one can shuffle the rows
of a matrix with n rows is n!. This is a huge optimization
space and exhaustive brute force search is not possible. FAWS
uses GA search to find a suitable shuffle order. Exchanging
rows does not have high computational/temporal complexity so
the overhead is minimal for FAWS. The row-exchange usually
involves changes in the metadata of the tensor i.e., only the
tensor “view” changes and no actual data is copied to/from
the memory. When implemented this way, the temporal com-
plexity is O(1) (for each row swap). Furthermore, since all
the rows for a PE block are usually loaded into a shared
memory pool, row-exchanges do not increase the cache miss
rates significantly.

1) Genetic Representation: GA is especially suitable for
this search problem because it is highly parallelizable and
defining the fitness functions and chromosomes is quite
straightforward. FAWS uses GA to find the row shuffle order
for a given matrix multiplication for a known hardware fault
profile.

We define the chromosome to be an array of integers that
represents the row-exchange order for the multiplier matrix.
The length of the chromosome is equal to the number of
rows of the matrix. The genes (i.e., the element positions of

the chromosome) represents the PEs that compute the row
indicated by the allele (i.e., the value of the gene). This means
each gene position gi maps to a set of PEs (CUDA cores)
Si ∈ {Ci, Cj , ...}. If gi contains the allele (value) ai, then
row ai of the multiplier matrix is scheduled to be computed
by the PEs in Si (Figure 2).

The mapping of genes to actual hardware is not in our
control and is usually not known. However, this is not a
problem as long as the internal scheduling of the accelerator
is consistent. Consequently, our method is independent of the
inner workings of the accelerator. Of course, it is possible to
get more control over the scheduling by accessing the accel-
erator firmware. However, this results in a highly specialized
solution for a very specific hardware-DNN model pair for a
very specific fault profile. This is not a general solution and
usually not possible in proprietary hardware. Our method is
agnostic to the microarchitecture of the accelerator hardware.
If the fault profile changes, it is always possible to re-run the
GA search find a suitable scheduling scheme (shuffle order)
for FAWS.

2) Fitness Function: A DNN model inference involves a
number of matrix multiplications. We associate one chromo-
some for each matrix multiplication that is optimized by FAWS.
For a given fault profile and a set of chromosomes, the fitness
function is simply the top-1 classification accuracy of the
model when the computation is implemented on that hardware
with the row shuffle orders as determined by the corresponding
chromosomes. Every generation, the best N individuals from
a population are selected to be parents. These parents generate
new offspring through mutation and crossover. The fitness of
the offspring is evaluated and the best N individuals become
parents for the next generation.

IV. EVALUATION SETUP

A. DNN models

We use two types of DNN models for evaluation: mnist32-
cnn and fashion-cnn. mnist32-cnn consists of one convolu-
tional layer (c0) with 32 (4 × 4) kernels followed by three
dense layers (h0,h1,h2) and a final output layer (op). The
model is trained using the MNIST dataset [15] with the
images resized to 32×32 (for faster fault-injection simulation).
fashion-cnn consists of two convolutional layers, c0 and c1,
each with 32 (4 × 4) kernels. This is followed by two dense
layers (h0 and op). It is trained with dropout on the Fashion-
MNIST dataset [16] with 28 × 28 images. The fault-free
accuracy of mnist32-cnn is about 99% whereas fashion-cnn
is about 92%. We train three instances of mnist32-cnn and
fashion-cnn each using different seeds.

We analyze the fault sensitivity of each of the model in-
stances by injecting different types of errors into each of their
layers one-by-one. If faults in a particular layer significantly
degrade the performance, we use GA search to find the best
chromosome (row-exchange order) for FAWS.



TABLE I: Different types of errors
Error Description Max. Fault Rate
Flip-to-0 Set random exponent bit to 0 1E-1, 2E-1, 5E-1
Flip-to-1 Set random exponent bit to 1 1E-3, 2E-3, 5E-3
BitFlip Flip random exponent bit 1E-3, 2E-3, 5E-3
TF32 Set 13 mantissa LSBs to 0 1E-1, 2E-1, 5E-1
BF16 Set 16 mantissa LSBs to 0 1E-1, 2E-1, 5E-1

B. Fault Profiles

We consider an NVIDIA GPU-based DNN accelerator for
our experiments. This is simply for the sake of example
and there is no loss in generality during fault-sensitivity
analysis and recovery with FAWS. We assume the GPU has
20 streaming multiprocessors (SMs) and each multiprocessor
has 32 PEs (i.e., CUDA cores). We consider only 20 SMs per
GPU to keep our simulations tractable. Each CUDA core has
a fault rate i.e., probability of a fault manifesting and resulting
in an error.

The probability distribution of the FR of each CUDA
core is determined by the fault profile of the GPU. We use
six different types of fault profiles in our experiment and
distinguish between them by the maximum fault probability
(FRmax) . Thus a GPU with a fault profile characterized by
FRmax means that each of its CUDA cores have different
fault probabilities (including zero for non-faulty PEs) but none
exceed FRmax. At each timestep, each CUDA core is either
faulty or non-faulty with a probability distribution that depends
on its particular fault rate. We assume that faulty operation
of the CUDA cores are independent events for the sake of
generality; although in practice, there may be some strong
correlation between the FRs of spatially neighbouring CUDA
cores due to shared power/data bus, thermal hotspots etc.

For our evaluations, we generate artificial fault profiles of
the GPU for a given FRmax by randomly assigning a FR
∈ (0,FRmax) for each CUDA core. For a given FRmax, we
instantiate two different fault profiles using different seeds
to represent different hardware profiles. These hardware pro-
files represent different types of hardware with manufactur-
ing/aging defects, or the marginal behavior due to power
optimization schemes, or heterogeneous PEs with reduced
precision.

C. Error Types

At each time step, error instances are derived from the fault
profile using random binomial sampling. Based on the fault
model described in Section III-A, we simulate five different
types of errors. These errors and their corresponding FRmax

are listed in Table I. We are primarily interested in bitflips that
happen only in the exponent field of the FP32 data because
they affect the performance most strongly. Our preliminary
evaluations show that bitflips in mantissa are not very serious
because they do not cause large enough deviations from the
correct value.

We also define mantissa truncation as an “error” for sake
of consistency in description. While individual bitwise errors
in mantissa are not very serious, truncating out a block of

mantissa bits affects the performance of the model significantly
[4]. TF32 and BF16 are popular truncation schemes used in
DNN and ML frameworks. We emulate this reduced precision
by setting some number of mantissa least significant bits to
zero. Fault sensitivity analysis using TF32 and BF16 errors
gives us an indication of how sensitive the DNN is to the
precision offered by the mantissa bits and how much recovery
can be expected. This scenario may arise in cases when the
same model has to be implemented on different hardware
platforms that contain a mixture of PEs that compute using
different precision [5], and where hardware-in-the-loop opti-
mization may not be practical. In such a case, we would like
to know whether shuffling the rows using FAWS can recover
some of performance lost due to mixed precision arithmetic.
For the sake of generality, we consider an extreme case (i.e.,
a harder optimization problem) of a GPU with heterogeneous
CUDA cores that randomly switch between different levels of
precision (FP32, TF32 or BF16) with a fixed probability. Of
course, this is unrealistic and in practice, the CUDA cores
would be regularly arranged and their precision would be
controlled deterministically.

D. Metrics and Evaluation Parameters

The model performance is measured by evaluating its clas-
sification accuracy on the 5120 test images (i.e., images not
seen during training). Since errors manifest stochastically for
a given fault profile, we evaluate the model three times with
that profile and report its mean and standard deviation. The
fitness function for the GA algorithm also uses the mean over
three evaluations of the model for a given fault profile and
shuffle order.

Each GA optimization run is performed three times and we
use the best chromosomes out of each run (one run lasts for
100 generations). We limit the population size to 20 with a
Crossover Rate (CR) at 0.6 and Mutation Rate (MR) of 0.2.
During each generation, the fittest 20 individuals are selected
for breeding and generating the next batch of individuals
(truncation selection). This is faster than probabilistic selection
like the Roulette wheel. Moreover, we observe that most indi-
viduals have very close fitness values so Roulette wheel type
selection mechanisms are not worth the additional time and
computation. The hyperparameters for GA were determined
using a grid search. We use the same GA hyperparameters
across all our experiments for consistency. However, there
is much room for improvement if one were to use different
hyperparameters depending on the model and the DNN layer.
We leave this finer hyperparameter search problem for future
work.

V. EXPERIMENTAL RESULTS

A. Fault Sensitivity Analysis

1) mnist32-cnn: Figures 4 and 5 show the fault sensitivity
for different layers of mnist32-cnn. The figures report the mean
and the standard deviation of the performance degradation
across all model seeds and error profile seeds. In Figure 4,
we observe that the classification accuracy degrades gracefully



TABLE II: Sizes of matrices in different layers
Model Layer Multiplier Matrix Input Matrix/Vector

m
ni

st
32

-
cn

n

c0 32× 16 16× (29× 29)
h0 1024× 6272 6272× 1
h1 256× 1024 1024× 1
h2 64× 256 256× 1
op 10× 64 64× 1

fa
sh

io
n-

cn
n

c0 32× 16 16× (28× 28)
c1 32× (16× 32) (16× 32)× (32× 32)
h0 1024× 1568 1568× 1
op 10× 1024 1024× 1

Fig. 3: The range and distribution of the matrix multiplication
products in different layers for mnist32-cnn (before ReLU or
softmax).

Fig. 4: Sensitivity of different layers to bitwise errors in the
exponent field. Layer c0 is most sensitive due to high kernel
reuse.

with increasing fault rates. This is encouraging because it
shows that errors in computation do not automatically imply
catastrophic failures in DNNs. For mnist32-cnn, layer c0 is the
most sensitive to Flip-to-1 and Bitflip errors and contributes
most to performance degradation. These observations concur
with the results in [2]. The degradation becomes significant
when fault rates exceed 5e−3.

We hypothesize that the reason behind c0’s sensitivity to
these errors is due to i) the limited range of the output of
the convolution layer and ii) the high reuse of the kernel
matrix. From Figure 3, we observe that the outputs of the
convolution matrix multiplication (before ReLU activation)
are tightly concentrated around 0. When an exponent bit is
accidentally flipped to 1, the resulting error is quite large. If
the change is in the positive direction, this error is propagated
through the ReLU and maxpool layers and thus affecting the
rest of the DNN computation pipeline. Secondly, from Table II,
we see that c0 convolution has a small kernel matrix which
spans over a few PEs. These PEs are reused many times over
the im2col patches extracted from the image. Thus, recurring
errors in the PEs containing the kernel matrix are expressed
many times during the convolution thus amplifying the effect
of the error. The work in [2] also follows a similar reasoning.

In contrast, layers h0-h2 span over a large number of PEs
due to their large sizes but are used only once for multiplying
a feature vector (because inference is usually one image at a
time). Hence, the errors in h0-h2 layers do not cause significant
degradation. Among the fully connected layers, h2 is the most
sensitive to Flip-to-1 and Bitflip errors. This is probably due
to its proximity to the output layer. Any bitwise errors in its
exponent causes a large deviation resulting in wrong neurons
being activated in the output layer.

In Figure 5, we observe that Flip-to-0 errors cause very little
performance degradation (less than 5%) even at very high fault
rates. This seems to hold true irrespective of the model and
the layer in which this error manifests (see also Figure 6). In
fact, the authors in [1] purposefully set bits to zero when error
is detected, as a fault-correction technique. As stated in [1],
only a few neurons fire at a time while the rest are inhibited.
Since it is more probable that a neuron does not fire, a Flip-
to-zero (which inhibits firing) is more benign that Flip-to-1
(which may activate accidental firing).

Truncating the LSBs of mantissa (TF32, BF16) does not
cause dramatic degradation even at very high fault rates
(Figure 5). This observation is in agreement with the idea
behind aggressive precision reduction techniques used in [4].
Mantissa truncation errors affect output layer the most. It is
interesting to note that the output layer is relatively more
immune to Flip-to-1/Bitflip error than mantissa truncation
when compared with the other layers.

We reason that this is due to the precision sensitivity of
the final softmax activation as a result of the “squashing”
effect of the exponential function in softmax. The product
of the output layer matrix multiplication is a vector of ten
elements (one for each image class). This vector is fed into the
softmax activation which squashes them using an exponential



Fig. 5: Flip-to-0 errors are benign even at very high fault rates.
Mantissa truncation affects output layer (op) the most severely.

Fig. 6: fashion-cnn is more robust to errors. At FRmax=500e−3,
c0 and c1 are most affected causing significant degradation.

followed by normalization. When the elements of the vector
have similar values, the softmax operation is sensitive to
the precision. Mantissa truncation reduces this precision and
therefore introduces significant error into the final class scores.
On the other hand, exponent bit errors result in very large
changes that overwhelm the softmax output. However, since
the op layer multiplication for mnist32-cnn requires only a few
PEs, the overall effect of exponent bitwise errors is not very
pronounced.

2) fashion-cnn: The fashion-cnn model has two convolu-
tional layers. It is trained with multiple dropout layers and
therefore it is more robust and can tolerate error rates almost

two orders of magnitude higher than mnist32-cnn (Figure 6).
Similar to mnist32-cnn, the convolutional layers c0 and c1 are
most sensitive to Flip-to-1 and Bitflip errors. We reason that
c1 is more sensitive than c0 due to larger kernel size and the
more kernel reuse. Although the degradation due to only one
of the convolutional layers is not very much, when both c0
and c1 have errors, the degradation can be very high.

The fashion-cnn model is very robust to mantissa truncation.
Even at error rates as high as 0.5, the degradation is only a
few percentage points. This indicates that the precision of PEs
can be aggressively reduced without significant performance
degradation.

B. Performance Recovery with FAWS

Now that we have identified the which layers are most
sensitive to which errors, we use our GA-based FAWS and
observe what performance can be salvaged. We observe from
Figures 4 to 6 that some layer-error combination scenarios
have very little degradation. Our evaluations show that perfor-
mance recovery using FAWS on these layers has very little
effect. Thus, for the sake of brevity we only discuss the
performance of FAWS in the following layers. Of course, we
cannot expect the complete performance restoration on faulty
hardware but as we shall see, FAWS comes pretty close.

• c0 layer in mnist32-cnn for Flip-to-1 and Bitflip errors
(FRmax = 1e−3, 2e−3, 5e−3).

• h2 and op layers in mnist32-cnn for mantissa truncation
errors - TF32 and BF16
(FRmax = 100e−3, 200e−3, 500e−3).

• c0 and c1 layers in fashion-cnn for Flip-to-1 and Bitflip
errors (FRmax = 500e−3).

1) mnist32-cnn: The stacked bar plots in Figure 7 show the
performance degradation due to Flip-to-1 and Bitflip errors in
c0 and the subsequent recovery by FAWS using the shuffling
order obtained from GA search.

We observe that FAWS is able to recover almost 30% of the
lost accuracy (from ∼55% to ∼85%) when FRmax = 5e−3.
This is a huge gain in performance by simply shuffling the
rows. For lower fault rates, FAWS is able to recover almost
all lost performance. If we refer to [1], fault rates of 1e−3
correspond to about 50% power savings. Thus, by using
FAWS, we can aggressively lower SRAM voltages and gain
50% power savings with almost no loss in model accuracy
or latency. This is quite significant, especially when all it
costs is to shuffle the rows of the tensors before and after
multiplication.

The performance degradation due to mantissa truncation
and recovery using FAWS for h2 and op layers is shown in
Figure 8. FAWS recovers 2-4% accuracy points for h2 and
op layers individually. When both layers undergo mantissa
truncation, it is possible to recover almost 5% accuracy points
(h2-op). While this is not as dramatic as the 30% recovery for
c0 layer, it still shows that it is possible to recover from some
performance degradation when executing models in heteroge-
neous hardware with mixed precision. It is worth noting we
have used extremely unrealistic and severe truncation errors



Fig. 7: FAWS recovers model performance by as much as 30%
in mnist32-cnn models for Flip-to-1 and Bitflip errors.

Fig. 8: FAWS can recover model accuracy when using reduced
precision without any retraining or sophisticated hardware-in-
loop optimization

for the sake of generality. During actual implementation, PEs
do not sporadically change their precision and they are not
randomly scattered throughout the hardware. Rather, they are
arranged in a structured manner with controllable deterministic
precision scheduling. In such a case, we can expect GA to find
a much more optimized solution for much higher performance
recovery.

2) fashion-cnn: The fashion-cnn model is much more ro-
bust than mnist32-cnn. Significant degradation is observed
only when error rates reach as high as 500e−3 for Flip-
to-1 and Bitflip errors. This translates to power savings of
approximately 60%. We use FAWS to recover some of the lost
performance due to errors in c0 and c1, which is shown in
Figure 9. We observe that FAWS is able to recover about 5%
accuracy for each layer individually and around 10% when
errors are present in both layers (c0-c1). When errors are
present only in c0, we can expect almost full performance
recovery. Even at such high error rates, we can expect FAWS
to recover the performance of the model by simply shuffling
the rows. At “lower” fault rates (100e−3, 200e−3) there is
little degradation, so using FAWS doesn’t have any significant
improvement.

Fig. 9: Even with fault rates as high as 0.5, FAWS can still
recover upto 10% of performance for fashion-cnn model.

Fig. 10: GA convergence rates for different fault profiles. The
rate differs with types of layers, models and fault profiles.

C. GA Convergence

Figure 10 shows how the accuracy of the model improves
non-decreasingly as we increase the number of generations for
GA optimization. This means that it is possible to get better
chromosomes if we let the GA optimization run for longer
period of time. This is a major advantage over random search
where it is not guaranteed that the solutions will get better as
the search progresses. The designer can also decide when to
stop the GA optimization. Furthermore, we see that the starting
points and the rate of improvement is different for different
fault rates, layers and models. Thus, the designer is free to
choose different GA parameters when optimizing for different
layers/error types and fault profiles.

VI. CONCLUSION

It is possible to extract significant energy gains and re-
duced latency for DNN computations by using faulty/marginal
hardware. Our proposed FAWS: Fault-Aware Weight Scheduler
allocates non-critical computations of DNNs to compromised
PEs to minimize the performance degradation. It achieves
this by shuffling the rows of the matrices during matrix
multiplication. The row-shuffling order is determined using
GA-based search. With FAWS, we are able to recover up to
30% of classification accuracy for fault rates which correspond
to power savings of approximately 50%.
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