

Power Management of Wireless Sensor Nodes with *Coordinated Distributed Reinforcement Learning*

SHASWOT SHRESTHAMALI MASAAKI KONDO HIROSHI NAKAMURA

THE UNIVERSITY OF TOKYO

2 December 2019 ICCD 2019, Abu Dhabi

Wireless Sensor Networks for Internet of Things

Energy Harvesting Wireless Sensor Nodes (EHWSNs) are an attractive solution for Internet of Things (IoT).

- Autonomous operation
- **Perpetual operation**

Requires **scalable** , **intelligent** and **adaptive** power

use

management policies

ine green

www.libelium.com

http://www.libelium.com/wp-content/themes/libelium/images/content/applications/libelium_smart_world_infographic_big.png 2

ENO-RL System

• Sensor is always ON

- ➢ Solar EHWSN
- \triangleright Duty cycle determines node energy consumption
- \triangleright Hourly data
	- \triangleright Tokyo: 1995-2018

Reinforcement Learning (RL)

- Assuming a Markov Decision Process,
	- **1. Perception:** What is the state of the agent?
	- **2. Action:** Take an action according to a policy that maps states to actions
	- **3. Reaction:** Receive a reward as feedback from the environment
	- **4. Learning:** Learn from the reward to refine the policy.
- **OBJECTIVE**: Accumulate as much reward as possible

Deep Reinforcement Learning

- Use neural networks to predict the state-action value
- Learning via boot-strapping (better estimates from estimates)

Single Agent ENO-RL: B-ENO

Basic**-ENO**: Naïve implementation of Deep RL for ENO-RL with a single agent.

State Space:

- **Battery level**
- Harvested Energy
- Energy Neutral Performance
- Weather Forecast

Action Space:

- Discrete Duty Cycle,
	- $D_{min} \leq d_t \leq D_{max}$

https://favpng.com/png_view/wireless-cliparts-wireless-sensor-network-internet-of-things-clip-art-png/JKvwgxaM

B-ENO: Performance

PERFORMANCE METRIC (Energy Neutral Operation)

ENO is achieved if there are less than 24 violations in 365 consecutive days

LEARNING TIME

(Time required to achieve ENO (1995-) 90,186 hours (~10 years)

LEARNING PENALTY

(Violations committed during learning)

17,722 violations (~2 years)

OPERATION PENALTY

(Violations committed during greedy implementation from 1995-2018)

0 violations

Accelerating B-ENO

- Can we decrease the learning *time* and *penalty* by leveraging
- the multiple nodes of the sensor network to
- simultaneously interact with the environment

- Leverage the collective experience to learn **better** and **faster**
- Explore **wider** and **faster**

experience => (present_state, action, reward, next_state)

Distributed RL (DiRL) 9

10 agents (nodes) and 1 central learner

Every day(episode):

- 1. Nodes execute e-greedy policy
- 2. Upload experiences to central server
- 3. Server executes N_l learning steps
- 4. Server broadcasts new policy to nodes

https://favpng.com/png_view/cloud-hosting-cliparts-web-server-cloud-computing-web-hosting-service-icon-png/BUiv4YG7

Challenges and Proposed Methods

10

1. Use Distributed RL (DiRL) to accelerate learning (**D**istributed**-ENO**)

 \odot State space is not fully explored -> non-robust policies

2. Partition the state-space via coordinated exploration (**P**artitioned**-ENO**)

 \odot Some agents face higher risks of violating ENO

3. Uniformly **distribute the risk** of exploration among nodes (**S**afe**-ENO**)

 \odot Playing safe does not give best performance.

4. Dynamically adapt the exploration rate to tradeoff between learning time and learning cost (**A**daptive**-ENO**)

Comparative Analysis

*Penalties are summed across all nodes for D,P,S,A-ENO

Comparison: Learning Time 12

Comparison: Learning Penalty 13

Partitioning the State Space 14

- High correlation between duty cycles (actions) and battery levels (states)
- Bias node duty cycles to explore different battery states
- Coordinate the nodes of DiRL to explore different regions of the vast problem state-

space and partition the state space using different exploratory actions.

Comparison: Exploration 15

A-ENO: Year Run 16

Battery Profile for Tokyo, 2002 100% 80% Battery (%) **D**margin 60% $+$ b_{opt} 40% 20% $\boldsymbol{0}$ 50 100 150 200 250 300 350 Ω Day

 \checkmark Battery level is well within the required range.

 \checkmark No violations despite seasonal and diurnal variations

A-ENO: Seasonal Adaptation SummerA-ENO: TOKYO.2002 Battery Duty Cycle **Solar Radiation** 1.0 During summer, high duty cycles are used to maximize utility. $\overline{q_1\overline{r}}$ b_{opt} b_{opt} : ✓ Adaptation to sudden low energy days 0.0 231 232 233 234 235 236 237 238 239 230 240 Day

- \checkmark During winter, lower duty cycles are used to save energy.
- Duty cycle is maximized when possible.

CONCLUSION

- 1. Non DiRL solutions are optimal but take impractically long to learn (B-ENO).
- 2. DiRL solutions learn faster but naïve implementations are sub-optimal (D-ENO).
- 3. Learning cost and time can be decreased by partitioning state space exploration (P-ENO).
- 4. Partitioning state space distributes risk nonuniformly which can be traded off for some performance loss (S-ENO).
- 5. Dynamically adjusting exploration rate trades off risk and performance and enhances learning (A-ENO).

Thank you

Any Questions or Comments

B-ENO: Learning 20

D-ENO: Learning 21

LEARNING TIME 5,249 hours (~0.6 years)

LEARNING COST (cumulative) 7,930 violations (~0.9 years)

D-ENO: Testing 22

TOTAL FULL

Violations:

0.0

Challenges in Deep RL for ENO-RL

• Requires **LOTS** of training data

- Longer training periods
- Larger number of violations (downtimes and overflows)
- Unstable learning due to bootstrapping
	- Training should include a "correct" mix of positive and negative experiences.
	- Maximizing **EXPLORATION** of the state-space is critical
		- Unseen states may cause the network to destabilize

• Also, maximize utility

Exploration-exploitation tradeoff

23

GOALS:

- Converge to a robust policy
- Minimize learning time
- Maximize node utility (minimize violations during learning)

Safe Exploration: S-ENO

- High-duty cycle as non-greedy action -> more violations
- Low-duty cycle as non-greedy action -> less violations
- Change the preferred non-greedy action after every episode.

Adaptive exploration: A-ENO

- Different nodes -> different environments
- Different environments -> different learning behavior
- Different learning behavior -> different annealing rates for ϵ .
- Increase ϵ if reward is negative.
- Decrease ϵ if reward is positive.

Adaptive exploration: A-ENO ²⁶

More diverse experiences in the beginning

Robust performance for anomalous states