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Abstract—Energy Harvesting Wireless Sensor Nodes
(EHWSNs) require adaptive energy management policies
for uninterrupted perpetual operation in their physical
environments. Contemporary online Reinforcement Learning
(RL) solutions take an unrealistically long time exploring
the environment to converge on working policies. Our
work accelerates learning by partitioning the state-space for
simultaneous exploration by multiple agents. We achieve this by
using a novel coordinated ε-greedy method and implement it via
Distributed RL (DiRL) in an EHWSN network. Our simulation
results show a four-fold increase in state-space penetration and
reduction in time to achieve optimal operation by an order of
magnitude (50x). Moreover, we also propose methods to reduce
instances of disastrous outcomes associated with learning and
exploration. This translates to reducing the downtimes of the
nodes in simulations corresponding to a real-world scenario by
one thirds.

Keywords-Distributed Reinforcement Learning, Deep Rein-
forcement Learning, Energy Harvesting Wireless Sensor Nodes,
Energy Neutral Operation, Internet of Things, ε-greedy explo-
ration

I. INTRODUCTION

Energy-Harvesting Wireless Sensor Nodes (EHWSNs) and
their networks constitute an integral part of the Internet of
Things (IoT) ecosystem. Adaptive power management policies
ensure uninterrupted operation of EHWSNs without the need
for human intervention even when the working environment
is complex and unpredictable. When a node consumes all
of the energy harvested without exceeding its battery limits,
Energy Neutral Operation (ENO) is achieved [1]. Judicious
regulation of duty cycles for ENO has been achieved through
Reinforcement Learning (RL) methods [2]. For the sake of ex-
ample, we base our discussions on a simulated solar EHWSN
system [2], shown in Fig. 1, hereafter referred to as ENO-
RL. The ENO-RL evaluates various duty cycling schemes
by trial-and-error. A scalar reward acts as a feedback that is
used to further optimize its policies and maximize node utility
(by maximizing its duty cycles without violating ENO.) This
learning-based method is adaptive by nature and dispenses
with the need for hand-crafted optimizations which makes it
very suitable for a wide range of application scenarios.

During learning, the RL agent has to explore a vast state-
action space (for instance, the space of all the combinations of
different duty cycles, battery levels and harvested energy) in
search of optimal policies. On the other hand, it is also equally
important for the agent to maximize its utility by behaving
optimally. ε-greedy methods are a simple yet practical method

to manage the exploration-exploitation trade-off. Using this
method, the agent acts greedily according to its learned policy,
but with a probability ε, it takes a random exploratory action.

Motivation: Ideally we would prefer EHWSNs to acclima-
tize in their working environment and reach maximum utility
as soon as possible. However, acting greedily prematurely
leads to weak policies that cannot deal with anomalous and
rare states that ultimately reduces the overall utility. Robust
policies require longer exploration periods which translates to
lost opportunities to maximize utility and higher probability
of disastrous outcomes. Here disastrous outcomes refer to
battery violations when the node goes out of operation due
to insufficient energy (downtimes) or when there is an excess
of harvested energy that cannot be utilized nor stored in the
battery (overflows). Downtimes result in reduced coverage and
rerouting which directly affects the network quality of service.
Overflows decrease the energy efficiency of the node.

Good exploration of the working environment during RL
produces better policies. However simply having a higher
exploratory rate does not necessarily translate to good ex-
ploration. This is because some regions of the state-action
space may not be easily accessible through naive undirected
exploration. For example, the chances of an agent with very
low battery reserves exploring higher states of battery level are
extremely slim if the duty cycles are randomly chosen. As a re-
sult of insufficient and inefficient exploration, the sub-optimal
solutions obtained are not robust. A possible workaround is
to use simulators and historical data with offline training to
extensively pretrain the nodes. However this is not always a
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Fig. 1. The ENO-RL system for a solar-EHWSN. The Adaptive Power
Manager (APM) uses RL to regulate the node’s energy consumption via duty
cycling.



feasible solution, especially for unknown environments.
Contribution: In this work, we propose to coordinate the

many nodes of the sensor network to explore different regions
of the vast problem state-space. For this, we base our work
on a conventional Distributed RL (DiRL) [3] system. In a
DiRL system (Section IV-A), multiple nodes interact with the
environment concurrently and their experiences are pooled
together in a central server. The server learns from these
experiences and broadcasts the updated policies back to the
nodes. A naive DiRL implementation does not however imply
state-space partitioning or efficient exploration. We propose a
novel exploration method, ε-pref, to partition the state-space
among sensor nodes for efficient exploration. This implicitly
results in higher risk of disastrous outcomes for some nodes.
We propose ε-safe to deal with the trade-off between efficient
exploration via state-space partitioning and the risk it entails.
Additionally, since each node of the sensor network generally
deals with its unique environment, it is important that it adapts
to perform optimally as fast as possible. This is possible by
decreasing instances of unnecessary exploration. To this end,
we present ε-adapt to dynamically adjust the exploration rate.
Our main contributions in this work are:
• We propose ε-pref to partition the state-space for efficient

exploration by coordinating the ε-greedy behavior in a
DiRL system. We achieve this by allotting each node in
an EHWSN network with a preferred exploratory action
such that each node explores a specific region of the state-
space (Section IV-B).

• We also propose ε-safe, a technique to distribute the risk
associated with exploration uniformly among all nodes
so as to increase the collective performance without
compromising heavily on exploration efficiency (Section
IV-C).

• Additionally, we propose ε-adapt, to automatically adapt
the exploration rate so as to minimize unnecessary explo-
ration and decrease the learning time and cost (Section
IV-D).

The rest of the paper is organized as follows. Section II gives
a brief overview of the related research. Section III presents
the theoretical background on ENO, RL and DiRL. Our novel
exploration schemes for the DiRL framework are explained in
Section IV. Section V describes our evaluation methodology
and comparison metrics. Section VI contains the results of our
experiments and we conclude with Section VII.

II. RELATED WORK

ENO for EHWSNs was first formally described in [1]
where the authors use a predictive system coupled with linear
programming optimization methods. RL-based approaches for
optimizing communication policies in EHWSNs were reported
in [4]–[6]. Tabular RL methods for ENO of EHWSNs, dis-
cussed in [2], [7], have very limited applications because they
require discrete states and actions with very long training
times. The authors in [8] improved upon this to using function
approximation with RL policy-gradient methods. Our work
is based on model-free value-function approximation for RL

using Deep Q Networks (DQNs) [9], described in Section
III-B. Our work can also be easily extended to policy gradient
[10], [11] and actor-critic RL [12] methods.

DQNs are known to be sample inefficient and therefore
suffer from lengthy learning times. They require a memory
pool from which the neural network (NN) extracts minibatches
during training. Populating this memory pool is expensive
in terms of time and performance. The authors in [3], [13]
propose DiRL to populate this pool via concurrent interaction
of multiple agents with the environment. However since their
application domain (playing computer games) and ENO-RL
are very different, naive implementation of their method
is not optimal. Computer games are artificial deterministic
environments where disastrous outcomes incur no real costs
unlike ENO-RL. We thus propose novel ε-greedy exploration
strategies to not only minimize the learning time but also
reduce the costs associated with learning. We would like
to note that, in our work, the DiRL agents do not interact
with each other, either directly or indirectly. This is not
an unreasonable assumption to make for EHWSNs because
harvesting ambient energy and sensing environmental data has
practically no effect on the working environment. RL agents
whose actions influence the environment experienced by other
agents lie in the domain of multi-agent RL and is not in the
scope of our research.

In [14]–[16], the authors present solutions to simultaneously
manage the power and QoS constraints. Doing so increase the
complexity of the RL problem, especially in regards to the
RL reward function which has been discussed in [17]. The
authors in [18] take a step further and optimize the operation
of EHWSN while taking into account the dynamic utility of
the data gathered by the sensor node. Model-based approaches
are discussed in [19].

The exploration-exploitation dilemma in RL is still an
open problem. ε-greedy and softmax action selection [10] are
popular methods of exploration via introducing noise in the
action space. The author in [20] gives an overview of different
exploration techniques in action space. In contrast, Noisy-nets
[21] and evolutionary strategies [22]–[24] inject noise into the
parameters of the neural network to achieve exploration. While
the above methods tackle how to explore, methods based on
concepts of surprise [25], curiosity [26], selective attention
[27], disagreement [28] and gradient ascent in information
[29] try to answer the question of when to explore. These
sophisticated exploration methods, while effective in selec-
tive domains, require non-trivial computational requirements
and therefore have limited application in resource-constrained
EHWSNs. In the end, ε-greedy methods give the best bang-
for-buck with good exploration at minimal computational cost
over other methods. In [30], the authors compare convergence-
based and ε-greedy exploration strategies for single agent RL
systems for EHWSNs.

Adaptive ε-greedy methods have been proposed in [31]
where the authors propose a fusion of softmax and ε-greedy
methods depending on the temporal difference error. However,
this method is not applicable for DQNs. Our adaptive ε-



TABLE I
KEY TERMS USED

Term Description Term Description
bt Battery Level st state
dt Duty Cycle at action
ht Harvested Energy rt reward
zt Node Energy Utilization π policy
pt Energy Neutral Performance et experience
fE Weather Forecast ε exploration rate

greedy method follows similar logic but adapts the change in
exploration rate as a function of the immediate reward. As to
our knowledge, this is the first work that exploits ε-greedy
methods for accelerating DiRL by introducing preferential
exploratory actions.

III. BACKGROUND

This section presents the theoretical background behind
ENO, RL and DQNs. For the rest of our discussion, we assume
a discrete time model with discrete time steps t. T consecutive
timesteps constitute an episode E. We consider the ENO-RL
System (Fig. 1) that consists of a generic sensor node powered
by a battery that is charged by a solar panel. The node’s power
consumption is determined by its operating duty cycle that is
regulated by the adaptive power manager (APM). The APM
uses RL to learn power management policies for duty cycling
to achieve ENO. The APM also takes into account a rough
weather prediction when choosing the duty cycles. Table I
lists some of the key terms used throughout this paper.

A. ENO

Let us consider an EHWSN with an ideal battery of capacity
bmax, capable of varying its power consumption via ND
discrete duty cycles dt ∈ [dmin, dmax], and can harvest a
maximum of hmax energy per timestep t. We further assume
that all of the harvested energy is first stored in the battery
before being consumed, i.e., harvest-store-use system. At time
t, the reserve battery level is bt ∈ [0, bmax], the harvested
energy is ht ∈ [0, hmax] and the energy consumed by the
node is zt = dt × zavg where 0 < dt ≤ 1 and zavg is the
average energy consumption of the node. The battery at the
start of t+ 1 timestep is given by:

bt+1 = bt + ht − zt (1)

The least energy that can be consumed when the node is
operational is zmin = dmin×zavg corresponding to the lowest
duty cycle. The node is operational at time t if bt ≥ zmin.
Downtimes are instances when bt < zmin and the node is out
of operation. We assume that higher duty cycles imply higher
node utility. Energy is irrecoverably lost and overflow occurs
when bt ≥ bmax.

We now define the ENO condition for the EHWSN. ENO
requires that the amount of energy harvested equals the amount
of energy consumed by the node in some time interval. This
ensures that the node always has enough energy to operate
(no downtimes) and harvested energy is not wasted due to
overflow. The objective of the APM is therefore to optimize
the duty cycles of the node such that downtimes and overflows

are minimized and the utility (energy consumption) of the
node is maximized. We lump battery inefficiencies and the
power consumed by the APM together with the node’s power
consumption without any loss of generality. This simplifies the
objective of ensuring ENO to:

bt + ht > zmin (2)
bt + ht − zt < bmax (3)

From the above equations we can conclude that as long as
zmin < bt < bmax for all t, the node is consuming all of the
energy that it has harvested and is therefore energy neutral
(assuming no downtimes or overflows). The energy neutral
performance (ENP) gives a measure of the deficit or surplus
of energy required to maintain ENO. If we assume that there
are no downtimes or overflows, then the ENP at time t is
given by pt = bt− binit where binit is the battery level at the
beginning of an episode E.

It must be noted that during some episodes, the total
harvested energy may not be sufficient to power the node even
at its lowest duty cycle. Alternatively, sometimes the energy
harvested may be so plentiful that even with the highest duty
cycle, some surplus energy would remain unused. The value
of binit plays an important role in such cases to ensure ENO.
Although it is difficult to express binit formally to guarantee
ENO, in practice, the range of suitable binit values can be
roughly estimated using guidelines in [1]. Here, we assume
that as long as the maximum deviation of binit from bopt is
less that bmargin ≥ 0, i.e., |binit − bopt| ≤ bmargin, there
exists a power management policy to achieve ENO. bopt and
bmargin are hyperparameters that can be estimated using the
formulations in [1].

B. DQN

We consider a model-free RL agent that interacts with
its environment in sequential discrete time steps. At each
timestep, the agent observes its state st, executes an action
at ∈ A where A is a set of possible actions, according
to a policy π(a|s) where π maps states st to actions at.
Consequently the agent receives a scalar reward rt and the
environment changes its state to st+1. The return is defined as
Rt =

∑∞
k=0 γ

krt+k which is the total cumulative return from
time t discounted by a factor γ ∈ (0, 1] .

For an agent following policy π, the Q-value function
Qπ(s, a) = E[Rt|st = s, at = a] gives the expected
return when executing action a from state s. The greedy
action ã = arg max

a
Qπ(s, a) maximizes this expected return.

The optimal action-value function max
π

Qπ(s, a), gives the
maximum action-value for the state-action pair (s, a) that can
be achieved by any policy.

We use a value-based RL using function approximation
with NNs in this work. Specifically we use a variant of
DQN called Double DQN [32] with dueling architecture [33].
On the i-th iteration, the action-value function, Q(s, a; θi), is
approximated by a DQN with parameters θi. The agent stores
its experiences et = (st, at, rt, st+1) at each timestep t in a



memory pool M = {e1, e2....et}. During learning, random
minibatches of experiences (s, a, r, ŝ) ∼ Z(M) are selected
for updating θ (refer Appendix B).

IV. PROPOSED SYSTEM

In this section, we describe the distributed ENO-RL system
and propose our novel exploration strategies to accelerate
learning.

A. Distributed RL

We first formulate the RL problem by defining the state-
action space, the reward function and then extend it to a
distributed system.

1) RL Formulation: The APM uses RL to learn policies to
optimize the duty cycles of the node. For an episode E, the
agent’s state at time t is st = (bt, pt, ht, fE). fE ∈ [1, 2...NF ]
is a rough estimate of the predicted energy harvesting op-
portunity for episode E that can be easily obtained from the
internet, e.g., weather forecast websites. The agent’s actions
at correspond to the possible duty cycles d ∈ [ dmin, dmax] .
The reward rE ∈ [−1, 1] is calculated only at the end of the
episode E and all the state-action pairs that were encountered
during E are equally credited with that amount. This reduces
reward sparsity and stabilizes the learning process. rE is based
on the mean battery level bE , for episode E (Fig. 10). We
do not shape the reward to prefer any particular value of bE
as long as it is within the working range of bopt ± bmargin.
The rewards decrease linearly as bE deviates further from
this range. A large bmargin implies greater uncertainty about
the optimal battery level. While this increases the complexity
of the problem, it greatly relaxes the effect of the choice of
hyperparameter bopt which is not easily obtainable. rE is given
by:

rE =

{
1, if |bopt − bE | ≤ bmargin
1.5− 5× |bopt−bE |bmax

, otherwise
(4)

This reward function encourages the agent to maintain the
battery levels within a safe working range bopt ± bmargin,
while allowing the battery levels to fluctuate sufficiently during
an episode. The constants used in the Equation (4) were
determined empirically.

Motivating Example: Let us take two RL agents, Red and
Blue, attempting to solve the ENO-RL system in a non-
distributed framework. Red always chooses dmax during ε-
greedy exploration and Blue always chooses dmin. Figure 2
shows the combined scatter plot of the state-space (ENP state
not shown for clarity) visited by each of the agents after
one year of training. Agent Red explores using a high duty
cycle and consequently spends more time in regions of low
battery levels. Similarly Blue has a lower duty cycle and
therefore experiences higher battery levels. From this figure,
we observe that it is possible to divide the state-action space
between agents by biasing their preferred exploratory actions.
Furthermore, we can expect each of these agents to learn from
each others’ experience to enhance their collective intelligence.

Fig. 2. A clear state-space partitioning as a result of different exploration
policies of two agents, Red (high duty cycles) and Blue (low duty cycles).
The discrete tiers correspond to each of the discrete weather prediction states
(top one corresponds to a sunny day).

We make use of these insights and propose our coordinated
exploration methods for the following DiRL Framework.

2) DiRL Framework: We consider a distributed EHWSN
network that consists of one central learner and a fleet of Nw
workers. The EHWSNs are the workers whereas the central
network server is the learner. During the i-th episode a worker
wk, k = 1, 2, ...Nw, interacts with its unique environment
according to a policy π(wk|θi) and uploads its stream of
experiences (sk1, ak1, rk1, ŝk1), ..., (skT , akT , rkT , ŝkT ) to a
global memory pool M. The learner randomly gathers a
minibatch of experiences Z(M) from this pool and performs
Nl learning steps. The updated parameters θi+1, are then
broadcast back to the workers. The workers do not execute any
learning steps. We make this assumption because EHWSNs are
typically too constrained in their computational resources to
perform gradient-based learning. All workers receive the same
set of parameters from the learner. Their policies differ only
with respect to their exploratory behavior.

B. Partitioned ε-greedy Exploration: ε-pref

Let us define a function Ω(wk) = k that maps each worker
wk to a unique real number k. Let ã denote the greedy action.
For a given node w, the probability of taking an action a ∈ A
is:

p(a|w) =

{
1− ε+ ε

NA
, if a = ã

C(a,w) ε
NA

, otherwise
(5)

For naive ε-greedy method, C(a,w) = 1 and all actions are
equally probable to be the exploratory action. This acts as our
baseline method for comparison between DiRL methods. We
refer to it as ε-naive method. In this method, the diversity in
experiences is assumed to be a consequence of the stochastic-
ity of the unique environments experienced by each worker
node. In cases when the stochasticity of the environment
is insufficient to induce diverse exploratory behavior, the



experiences gathered are redundant. Consequently, while ε-
naive methods increase the quantity of experiences to learn
from, these experience are not necessarily diverse. We describe
several methods to overcome this problem below.

The state values corresponding to the battery level (and
therefore ENP) are highly correlated with the choice of actions
as we saw in Fig. 2. In contrast, the states for harvested energy
and weather prediction are completely independent of the node
duty cycles. We can hope to divide the state-space only on the
basis of battery level. We do so by dedicating each node with
a preferred duty cycle for exploration by a preference factor
of C(a,w) as follows:

C(a,w) =

{
u+ 1−u

Nw
, if a = Ω(w)

1−u
Nw

, otherwise
(6)

Equations (5) and (6) describe a coordinated exploratory
scheme, referred to as ε-pref, where a node w is instructed by
the central learner to prefer action a = Ω(w) for exploration
by a probability u over other actions. As a result, even if all
the nodes experience the same state, the state-action space is
maximally explored because the nodes try out all the different
possible actions (assuming NA ≤ Nw) which may possibly
lead the nodes to different regions of the state-space.

C. Safe ε-greedy Exploration: ε-safe

ε-pref maximizes state-space exploration but as a result,
some nodes always end up taking risky actions and facing
disastrous results. This reduces the performance of the nodes
and affects the overall system performance. To distribute the
risks without compromising exploration, we propose a safe
exploration method that we call ε-safe, where nodes switch
their preferred exploratory action every iteration (or episode).
If we redefine the condition for a in (6) for the i-th iteration as
a = (Ω(wk) + i) mod NA, the preferred actions of all nodes
change with every iteration. This way, each node explores
an action for one iteration (T timesteps). Doing so allows
the node to explore that action sufficiently without incurring
too much risk. Furthermore, we also dynamically change the
preference of exploration, u, such that u ∝ ε. This means that
when the node is exploring at a high rate, it tends to prefer one
particular action for exploration during an episode. In the next
episode, it will explore with preference to another action. This
way, during exploration, the node cycles through all its actions,
trying one preferentially in each episode. As ε decreases, the
preferences become less pronounced.

D. Adaptive ε-greedy exploration: ε-adapt

In ε-greedy methods, like the ones discussed above, a typical
strategy is to start with a high value of ε and gradually anneal
it as training progresses. This ensures high exploration at early
stages of training. Naive ε annealing methods may result in
sub-optimal learning because the agent may start acting greed-
ily before it has explored enough and converge sub-optimally;
or it may explore for a longer time than required thus missing
out on chances for maximizing utility. Furthermore, one fixed

annealing method cannot be expected to be optimal for all
environments. We propose an adaptive scheme, referred to
as ε-adapt, to automatically adapt the rate of exploration
during learning based on achieved rewards. The basic idea
is to explore more when rewards are low (i.e., the agent is
behaving sub-optimally) and to behave progressively greedily
as rewards increase. We propose an adaptive method where
positive rewards reduce ε by a factor of β and negative rewards
increase it by the same factor. Expressed mathematically, if the
i-th episode acquires a reward ri using an exploration rate εi,
the exploration rate for next episode, εi+1 ∈ [εmin, εmax], is
given by:

εi+1 = εi(1− β
ri
|ri|

) (7)

This method of exploration results in faster adaptation to the
nodes’ unique working environments and increase in utility.

V. EVALUATION METHODOLOGY

We simulate the ENO-RL system using realistic values
(see Appendix A) based on a TMote Sky [34], with solar
radiation data for Tokyo from the Japanese Meteorological
Agency. Their website [35] provides hourly data and therefore
we assume each timestep to have a duration of one hour.
An episode lasts for one day and so contains T = 24 time
steps. We split up the days into NF = 10 categories based
on their total solar radiation and use it to simulate the coarse
predictor of future energy, fE . Every hour, the ENO-RL APM
identifies its state st and chooses an action at corresponding
to a duty cycle dt from ten equally spaced discrete duty cycles
(ND = 10, dmin = 10%). At the end of the day (episode), the
APM calculates its reward rE , and uploads the experience into
its memory pool. The APM collect experiences for a week
before it starts learning, after which learning takes place at
every time step.

The DQN uses the hyperparameters listed in Appendix B.
For DiRL systems, the nodes receive an update of their DQN
parameters from the central server along with an ε-greedy
policy directive. This directive sets the value of ε and C(a,w)
for each node. The nodes then interact with their respective
environments and upload their experiences at the end of 24
hours (one episode). On receiving the experiences from the
different nodes, the central server trains for Nl = 1000
iterations and then broadcasts the updated parameters and
exploration directives back to the nodes.

We determined the annealing rate for ε empirically. In single
node non-DiRL systems, we anneal ε from 0.9 to 0.01 at a
rate of 0.1 per year. For the DiRL systems, εi for episode (or
day) Ei is given by:

εi = 0.9− Ei
Ei + 40

(8)

We compare between different methods on the basis of
battery violations (downtimes or overflows) because this is
a direct indicator of ENO. We define the learning time to
be the time required for a policy to achieve ENO. ENO is
said to be achieved if the number of violations is less than



TABLE II
ENO-RL POLICIES

Policies ε-greedy Type RL Type Preference, u
B-ENO ε-naive non-DiRL N/A
D-ENO ε-naive DiRL 0.0
P-ENO ε-pref DiRL 0.5
S-ENO ε-safe DiRL ε
A-ENO ε-adapt, β = 0.1 DiRL ε

24 in a span of 365 consecutive days. We also define the
learning cost as the number of violations committed by a node
before achieving ENO. For DiRL system, we sum the violation
hours of all the nodes. Ideally we would like to minimize both
learning cost and time. To compare the state-space penetration
in a given time interval between different methods, we take
the covariance σ(b, h), of the state-values of battery b, and
harvested energy h. This makes sense because the other state
variables, ENP and prediction, are dependent on b and h. High
values of σ(b, h) indicate more state space coverage.

We want to answer the following questions through our
experiments.
• What speedups can we expect to gain from DiRL meth-

ods?
• How does partitioning the state-space with ε-pref affect

learning time and cost?
• Can we minimize the learning costs with ε-safe?
• Can an adaptive ε-adapt lower learning time and cost?
We compare four different policies for the ENO-RL system,

summarized in Table II. All DiRL solutions use ten workers
(Nw = 10) and one separate learner. We use B-ENO and D-
ENO as baselines for comparison. The values of u, β and the
annealing rate of ε were determined empirically.

Since the nodes of a DiRL system are expected to expe-
rience different environments, we simulate this by allowing
each worker to interact with an environment based on solar
data of Tokyo from different years 1. B-ENO trains with the
solar data starting from 1995. Once a system achieves ENO,
we test its robustness by implementing it greedily for a period
from 1995 to 2018. We also conduct analytical simulations
where all the nodes in DiRL experience identical environments
based on solar data for 2000. This is to remove the effect of the
environmental stochasticity during exploration for fair analysis
of our proposed exploration schemes,

VI. RESULTS

In this section, we present the results of our experiments.

A. Acceleration in Learning due to DiRL

Figure 3 shows the learning time for the different policies in
a log plot. As expected, when we scale up from a single agent
to a DiRL system with ten nodes, there is a corresponding dra-
matic decrease in learning time. With our proposed methods,
we are able to achieve even better results and achieve speedups
of up to 49.5x in the case of A-ENO. This means that with

1Ideally, we would like to have weather data from the same year but
different locations in Tokyo - but due to unavailability of such data, we resort
to this scheme.

Fig. 3. A naive DiRL system (D-ENO) accelerates learning by 17x compared
to a single agent RL (B-ENO). By coordinating the agents to explore
efficiently and using an adaptive exploration rate, learning is accelerated by
almost 50x (A-ENO). The numbers in the bars correspond to the time required
to achieve ENO.

ε-adapt methods, an EHWSN network can start performing
optimally within 10 weeks of deployment without any prior
training or human intervention.

Table III lists the violation instances during training and
testing of the different policies. Single node B-ENO has the
largest number of violations - longer learning period means
more violation instances. D-ENO commits fewer violations
due to accelerated learning but we observe that it is not
as robust as B-ENO during testing. Both B-ENO and D-
ENO use ε-naive exploration. The results indicate that simply
increasing the number of experiences using DiRL and relying
on the stochasticity of the environment to provide diversity
may not necessarily result in better policies. Due to inefficient
exploration, D-ENO learns fast but not enough. The poor
testing performance of D-ENO likely is the result of overfitting
and early convergence to local optima.

B. State-space partitioning with ε-pref

P,S,A-ENO coordinate node exploration to explore a wider
state-space to overcome the limitations of D-ENO. This is
achieved by assigning each node a different preferential ex-
ploratory action. As a result, P-ENO fares better in the test
compared to D-ENO (Table III); however, more exploration
comes with higher learning costs. P-ENO learns better but
costs more.

To further analyze the effects of coordinated exploration,
we look at Fig. 4 and Fig. 5 obtained through analytical
simulations where all nodes experience identical environments.
Figure 4 shows the battery profiles for the different policies in
the first week of training. In the case of D-ENO, all nodes have
very similar battery profiles. However the nodes with P,S,A-
ENO policies experience widely different battery levels as a
result of coordinated exploration (ε-pref, ε-safe, ε-adapt). This
diversity in the state-space exploration is further illustrated

TABLE III
NUMBER OF TRAINING AND TESTING VIOLATIONS

B-ENO D-ENO P-ENO S-ENO A-ENO
Training 17722 7930 8817 5392 5921
Testing 0 20 16 8 0



Fig. 4. Battery profiles for the first week of training. P,S,A-ENO experi-
ence diverse battery states compared to D-ENO as a result of coordinated
exploration.

Fig. 5. Scatter plot of the states visited by different policies in the first
two weeks of training. A-ENO has the most spread, i.e., better exploration
compared to other methods. A-ENO has the highest covariance between the
state values corresponding to battery levels and harvested energy during the
first 100 days of training (bottom figure).

in Fig. 5 as a scatter plot of the states visited. The bottom
part of the figure shows the covariance between battery levels
and harvested energy, for each day, for the first hundred days.
We observe that D-ENO has the least spread (and therefore
least covariance) resulting in lesser than par performance. All
the other policies cover a wider state-space. A-ENO has the
highest variance (four times that of B-ENO) and experiences

Fig. 6. The figure shows the cumulative downtimes of all the nodes for
D-ENO and P-ENO in the first month. All nodes experience about the same
number of downtimes in D-ENO. In contrast, owing to the risks of exploration
by partitioning the state-space, the number of downtimes committed by each
of the nodes of P-ENO vary significantly (higher duty cycle nodes experience
more downtimes).

a wider range of battery levels (downtimes and overflows) in
its very first week of training, resulting in reduced learning
costs and superior acceleration. As expected, the covariance
decreases as exploration rates decrease and the nodes act more
greedily towards the end of the 100 day period.

C. Safe Exploration with ε-safe

We now discuss the effects of safe exploration. By assigning
each node a different duty cycle with ε-pref, some nodes
experience more violations than other. For instance, in the
battery profiles for P,S,A-ENO in Fig. 4, Nodes 8-10 drain
their batteries quicker than other nodes because they explore
using higher duty cycles. Figure 6, also obtained through
analytical simulations, illustrates this more clearly. It is clear
from the figure that some nodes are at more risk of downtimes
due to their exploration policy.

While it is inevitable that the nodes suffer through these
violations to learn better, we can better distribute these risky
situations to reduce learning costs. This is achieved by ε-
safe in S-ENO. By cycling the exploratory actions with every
iteration, the learning costs are reduced: S-ENO has lower
costs and better results compared to D-ENO and P-ENO as
shown in Table III. With safe exploration we can reduce
the learning costs by three times compared to B-ENO. This
illustrates that it is possible to distribute the risk of exploration
without compromising the policy performance.

A comparison of the cumulative learning costs for all DiRL
methods is shown in Fig. 7. A-ENO has a slightly larger
learning cost compared to S-ENO, a trade-off for better test
results, i.e., S-ENO trades off safety with robustness. D-ENO
is able to decrease its downtimes when compared to P-ENO
but commits many more overflows instead. This indicates
improper function approximation due to insufficient variety
in training experiences. P-ENO has the highest downtimes be-
cause the risks associated with ε-pref are unevenly distributed.

In D,P,S-ENO, all the nodes follow the same annealing rate
for ε. This may not be optimal for nodes to adjust their unique
working environment. We get better results by dynamically
adapting the exploration rate with ε-adapt.

D. Adaptive Exploration with ε-adapt

For A-ENO, the exploration rate depends on the reward
received in the previous episode. A positive reward entices



Fig. 7. The figure shows the number of violations for different policies in
the first half of the training year. S-ENO has the lowest number of violations
followed by A-ENO due to their cyclic preference of exploratory actions.
D-ENO has unstable learning illustrated by the sudden increase in overflows
around the 3000th timestep.

Fig. 8. The figure shows the exploration rates for different nodes of A-ENO
during training. ε-adapt encourages greedy behavior if rewards are positive.
Nodes that start accumulating rewards quickly anneal their ε faster. The dashed
gray line shows the non-adaptive ε-decay for D,P,S-ENO.

the node to act more greedily whereas a negative reward
encourages it to explore more. This requires the node to have
some minimal amount of exploratory experience before it
can start to adapt. Thus in our experiments, A-ENO starts
dynamically adapting its exploration rate only after ε has
annealed to a value below 0.5. Once it starts to adapt ε,
we limit its value at a maximum of 0.5. We do this so that
excessive loss in rewards due to exploration does not cause
the node to act in a complete random manner.

Figure 8 shows how ε adapts for different nodes of the A-
ENO system. The adaptive behavior of the A-ENO system
is triggered around the 25th day of training. Node 1 (blue)
accumulates rewards faster than its counterparts and quickly
anneals its ε, i.e., given Node 1’s environment, exploration
seemed to be redundant. As a result, the node started acting
more greedily and accumulating even more rewards.

Node 9, on the other hand, is having difficulty in receiving
positive rewards even until the 75th day, probably owing to
a difficult environment. Hence, it keeps exploring until the
central server learns a good enough policy. In doing so, Node
9 not only increases its rewards but all the other nodes also
benefit from its exploratory experiences. By the 115th day, all
nodes have started acting mostly greedily. The spikes in their
curves correspond to episodes of negative rewards - this may

Fig. 9. Intelligent duty cycling policy learned by A-ENO.

have happened due to exploration or a faulty policy.
Dynamic exploration ensures that nodes do not blindly

anneal their ε on the basis of time. Rather, the performance
of the nodes (indicated by rewards) dictates the annealing
rates. Consequently, A-ENO learns efficiently by adjusting ε
according to the working environment. We observe that A-
ENO achieves perfect ENO 50 times faster than B-ENO and
with one third of the learning cost (Fig. 3 and Table III). As
mentioned before, this superior performance comes with some
increase in risky exploratory behavior.

E. Optimal Duty Cycling for ENO-RL
Figure 9 shows the duty cycling behavior corresponding to

a greedy implementation of A-ENO policy for 2018 (during
testing). It shows the battery and solar profile as well as the
duty cycles for ten consecutive days. We observe that the node
adapts its duty cycle to the diurnal variations and the widely
different solar energy profiles to maintain ENO. The policy has
learned that it is optimal to decrease the duty cycles during
nighttime and intelligently increase the duty cycles during the
day so that the battery level is within bopt ± bmargin. More
results are shown in Appendix C (Fig. 11 and 12).

VII. CONCLUSION

We propose coordinated ε-greedy exploration methods to
partition the state-space among different agents to explore
efficiently during DiRL and accelerate training in ENO-RL
systems. To overcome the non-uniform distribution of risk
associated with coordinated exploration, we propose methods
to trade-off performance and safety. Furthermore, by intel-
ligently adjusting the exploration rates and the preference
factors, we decrease instances of unnecessary exploration. Our
methods accelerate learning speeds by an order of magnitude
and lowers violations during training by upto one thirds.
We can conclude that using our methods, it is possible to
use a comparatively simple ε-greedy exploration to optimize
exploration for a large state-space. As a result, EHWSNs can
work optimally in an environment that it has never experienced
before with less than half a year of training and reduced
learning costs.
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APPENDIX A
ENO-RL SPECIFICATIONS

Parameter Value Description
T 24 Time steps per episode
bmax 10.0 Wh Maximum battery level
bopt 5.0 Wh Optimal battery level
bmargin ±3.0 Wh Maximum deviation from bopt
hmax 1.0 Wh Maximum harvested energy per timestep
zavg 0.5 Wh Mean node energy consumption per timestep
dmin 10% Minimum duty cycle
dmax 100% Maximum duty cycle
ND 10 No. of duty cycles
NF 10 No. of weather forecast levels

Fig. 10. The reward for episode E depends upon the mean battery level bE
during that episode. The rewards are clipped at ±1 to ensure stability during
training.

APPENDIX B
NEURAL NETWORK SPECIFICATION

TABLE IV
DQN HYPERPARAMETERS

Architecture Double DQN with Dueling
Networks [9], [32], [33]

Hyperparameters Single Agent
RL

Distributed
RL

hidden layers 1
hidden layer width 50
activation ReLu
initialization Kaiming, Xavier
minibatch size 32
replay memory
size 12,096

target update
frequency, Nu

241,920

discount factor 0.999
loss function mean squared error
optimizer ADAM
no. of learners 1
no. of workers 1 10
learning rate 0.001
learning steps
per day 24 1000

1 The values of the hyperparameters were obtained
empirically using the ENO-RL environment based
on weather data for Tokyo, 2000.

2 The fully connected layer was initialized us-
ing Kaiming Uniform method [36] and the
value/advantage layers were initialized using Xavier
Uniform method [37]. For added stability, the inputs
to the neural network are standardized to have a zero
mean and a standard deviation of one.

The ENO-RL agent maintains two copies of DQN at each
iteration: Q(s, a; θ) and Q(s, a; θ−) for stable learning [9]. θ−

are the parameters of a separate fixed (frozen) target network.
While θ is updated at every learning step, θ− is updated with
the values of θ after every Nu learning steps. The agent stores
its experiences et = (st, at, rt, st+1) at each timestep t in a
memory pool M = {e1, e2....et}. During learning, random
minibatches of experiences (s, a, r, ŝ) ∼ Z(M) are selected
and the Q-learning update is performed using the following
loss function (ŝ is the state following s).

Li(θi) = E(s,a,r,ŝ)∼Z(M)

[(
yDDDQNi −Q(s, a; θi)

)2
]

(9)

where yDDDQNi = r + γQ(ŝ, arg max
â

Q(ŝ, â; θi); θ
−
i ).

APPENDIX C
ENO-RL RESULTS

Fig. 11. Battery profile of ENO-RL using A-ENO for Tokyo, 2002 from
230th to 240th day. The battery fluctuates around the 50% mark and hence the
node is ENO. The nodes has high duty cycles during sunny periods and low
duty cycles during the night and day with low sunshine. Note that the duty
cycles never dip below 0.1%. On the 234th and 23rd day, the solar energy is
scarce and the APM intelligently lowers the duty cycle.

Fig. 12. Battery profile of ENO-RL using A-ENO for Tokyo, 2002 from
320th to 330th day. The APM successfully negotiates consecutive days of low
solar energy without any battery violations while maximizing the duty cycle
when possible.


