
Adaptive Power Management in 
Solar Energy Harvesting Wireless 
Sensor Node using 
Reinforcement Learning 

SHASWOT SHRESTHAMALI

MASAAKI KONDO

HIROSHI NAKAMURA

THE UNIVERSITY OF TOKYO

EMBEDDED SYSTEMS WEEK, EMSOFT 2017, SEOUL



E
M

SO
F
T

 2
0
1
7
, S

E
O

U
L

INTRODUCTION

• Energy Harvesting Wireless Sensor 
Nodes (EHWSNs) are wireless 
sensor nodes with 

 An energy buffer (battery)

 Energy harvesting module(s) (e.g. solar 
panels)

• IoT will require (trillions of) diverse 
sensor nodes deployed in different 
environments.

• Sensor Nodes should work 
autonomously and perpetually.

 Maximize utility of sensor node

 Sustainable and maintenance-free
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PROBLEM DEFINITION

Perpetual operation and maximization of sensor node 
utility can be achieved if:

ENERGY HARVESTED = ENERGY CONSUMED

Node Level Energy Neutrality
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THE PROBLEM

• Unreliable energy harvesting
• Unpredictable energy profiles

• Predictions are unreliable 

• Strategies change with changes in environment
• Change in location

• Change in climate

• Change in device parameters

• Scaling
• Billions/trillions diverse sensors deployed in unique working 

environments
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PREVIOUS APPROACHES 
TO ACHIEVING 
NODE LEVEL ENERGY NEUTRALITY
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Research Approach Limitations

Power management in energy 

harvesting sensor networks, 

Kansal et. al (2007)

Predict energy to be 

harvested and determine 

duty cycle

Performance dependent on 

prediction mechanism

Adaptive control of duty 

cycling in energy-harvesting 

wireless sensor networks, 

Vigorito et. al (2007)

Linear Quadratic Control 

System

Hyper parameters need to 

be manually adjusted

A learning theoretic approach 

to energy harvesting 

communication system 

optimization, Blasco et. al 

(2013)

Reinforcement Learning Applicable for sensor nodes 

with communications as the 

only power consuming 

operation.
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Hand-engineered solutions for all 
possible scenarios is impractical.

We want a one-size-fits-all solution 

i.e. sensor nodes that:

• learns the optimal strategy through

▫ Context aware action – perception –

learning cycle

• adapts once they have been 

deployed in the environment.
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PROBLEM DEFINITION

Perpetual operation and maximization of sensor node 
utility can be achieved if:

• ENERGY HARVESTED = ENERGY CONSUMED

 Node Level Energy Neutrality

• Battery is never completely full or depleted

• Sensor node maintains a minimum level of operation at all 
times

 Duty Cycling
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SYSTEM MODEL

• Solar EHWSN

 a load that consumes 
power depending on 
its duty cycle

 Higher power 
consumption implies 
higher utility

 sensing/communication 
functions are 
irrelevant.

• Use Reinforcement 
Learning (RL) to arrive 
at an optimal control 
policy.
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REINFORCEMENT LEARNING

• Type of machine learning based on experience rather than 
instructions
 Evaluative feedback instead of Instructive feedback

• Agent interacts with environment to receive rewards.
GOAL: Maximize the total (discounted) CUMULATIVE 
reward.
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REINFORCEMENT LEARNING

• Type of machine learning based on experience rather than 
instructions
 Evaluative feedback instead of Instructive feedback

• Agent interacts with environment to receive rewards.
GOAL: Maximize the total (discounted) CUMULATIVE 
reward.
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REINFORCEMENT LEARNING

• Type of machine learning based on experience rather than 
instructions
 Evaluative feedback instead of Instructive feedback

• Agent interacts with environment to receive rewards.
GOAL: Maximize the total (discounted) CUMULATIVE 
reward.
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(Battery, Weather, 

Solar Output)

State = s

50% Battery

20% Solar Output
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REINFORCEMENT LEARNING

• Type of machine learning based on experience rather than 
instructions
 Evaluative feedback instead of Instructive feedback

• Agent interacts with environment to receive rewards.
GOAL: Maximize the total (discounted) CUMULATIVE 
reward.
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POWER 

MANAGER
(AGENT)

ENVIRONMENT

(Battery, Weather, 

Solar Output)

State = s

Possible Actions:

Choose a duty cycle

50% Battery

20% Solar Output
40%

60%

80%
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REINFORCEMENT LEARNING

• Type of machine learning based on experience rather than 
instructions
 Evaluative feedback instead of Instructive feedback

• Agent interacts with environment to receive rewards.
GOAL: Maximize the total (discounted) CUMULATIVE 
reward.
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(Battery, Weather, 

Solar Output)

State = s

Action = a

50% Battery

20% Solar Output

Duty Cycle = 40%
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REINFORCEMENT LEARNING

• Type of machine learning based on experience rather than 
instructions
 Evaluative feedback instead of Instructive feedback

• Agent interacts with environment to receive rewards.
GOAL: Maximize the total (discounted) CUMULATIVE 
reward.
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(Battery, Weather, 

Solar Output)

State = s

Action = a

Reward = r,  New State = s’

30% Battery

40% Solar Output

Duty Cycle = 40%

Reward = 5

50% Battery

20% Solar Output
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Distance from 

energy 

neutrality, 

𝑆𝑑𝑖𝑠𝑡(𝑡𝑘)

Battery, 

𝑆𝑏𝑎𝑡𝑡(𝑡𝑘)
Harvested Energy, 

𝑆𝑒ℎ𝑎𝑟𝑣𝑒𝑠𝑡(𝑡𝑘)
Weather Forecast, 

𝑆𝑑𝑎𝑦(𝑡𝑘)

- 20000 mWh Low (< 20%) 0 mWh Very little sun

- 19000 mWh Mid (20% to 80%) 0 - 100 mWh Overcast

⋮ High (> 80%) 100 mWh - 500 mWh Partly Cloudy

0 mWh 500 mWh - 1000 mWh Fair

⋮ 1000 mWh - 1500 mWh Sunny

19000 mWh 1500 mWh - 2000 mWh Very Sunny

20000 mWh > 2000 mWh

State at epoch 𝑡𝑘 = 𝑆𝑑𝑖𝑠𝑡 𝑡𝑘 , 𝑆𝑏𝑎𝑡𝑡 𝑡𝑘 , 𝑆𝑒ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑡𝑘 , 𝑆𝑑𝑎𝑦 𝑡𝑘
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ACTION

𝑎 𝑡𝑘

DUTY CYCLE 

(%)

ENERGY CONSUMED 

PER HOUR (mWh)

1 20 100

2 40 200

3 60 300

4 80 400

5 100 500

Choose duty cycle of the sensor node

𝐴 = 𝑎 𝑡𝑘 ∈ 1,2,3,4,5
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POWER 

MANAGER
(AGENT)

ENVIRONMENT

(Battery, Weather, 

Solar Output)

State = s

Action = a

Reward = r

• Battery Level (3)

• Weather Forecast (6)

• Harvested Energy (7)

• Energy Neutral Performance (ENP) (41)

• Current battery – Optimal battery level

Discrete Duty Cycles

(20%, 40%, 60%, 80%, 100%)

• SINGLE scalar value

• Rewarded at the end of a day (episode)

• Based on deviation of battery from 

optimal value

An action is executed every hour

1 hour = 1 EPOCH
24 epochs = 1 EPISODE

Calculated using statistical 

data about the energy 

harvesting environment
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Reward 
Function
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• Awarded at the end of an episode (day).

• Ideally, difference between initial and final battery levels = 0

• Reward scheme depends on Terminal Energy Neutral Performance 

(TENP) i.e. ENP at the end of the episode.

▫ Terminal Energy Neutral Performance is defined here as
|𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 – 𝐹𝑖𝑛𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑒𝑣𝑒𝑙|
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THE LEARNING PROCESS

• Simulate using historical weather data for Tokyo, 2010.

• Agent tries various strategies, learns which policies are best 
and remembers them.

• Learning Algorithm: SARSA() Learning

• Compare with Offline Policy for 2011

 Offline Policy is calculated using assuming an omniscient solar 
energy predictor and Linear Programming methods.

 Gives the optimal policy.

 This is not a realistic solution as it requires perfect information 
about the future.

 Only for comparison purposes
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𝛼 learning rate = 0.1
𝜖 exploration ratio = 0.1
𝛾 discount factor = 0.8
𝜆 trace−decay parameter = 0.8
𝑁 number of iterations = 104
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SARSA(λ)
Learning

DAY 53, 

2010

Tokyo
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SARSA(λ)
Learning

DAY 53, 

2010

Tokyo

ITERATIONS

R
E
W

A
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S1

S32

S57 S809
REWARD 

465
a = 3

a = 4
a = 2 a = 5

𝑄(𝑠, 𝑎) -2.5 -1.7 0.5 -5.8 0.1 … 30.7 … 121.3 … 483.7 …

(𝑠, 𝑎) (1,1) (1,2) (1,3) (1,4) (1,5) … (32,4) … (57,2) … (809,5) …

Each state-action pair (𝑠, 𝑎) is associated with a Q-value 𝑄(𝑠, 𝑎)
for a particular policy 𝜋.

𝑄(𝑠, 𝑎) is the expected cumulative reward if you take action 𝑎 at 

state 𝑠 and follow 𝜋.

Epoch 1

Epoch 2

Epoch 3 Epoch 24

argmax
𝑎

𝑄(𝑠, 𝑎)
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➢ Each state action pair is initialized to an eligibility value (trace), 𝑒 𝑠, 𝑎 = 0
• Every time (𝑠, 𝑎) is visited, 𝑒 𝑠, 𝑎 = 𝑒 𝑠, 𝑎 + 1
• Otherwise, 𝑒 𝑠, 𝑎 decays by a factor of 𝛾𝜆.

• The value of 𝑒(𝑠, 𝑎) determines how influential that state-action pair 

was in obtaining the reward at the end of an episode.

➢ Agent starts at state 𝑠𝑘 and takes some action 𝑎𝑘 according to policy .

➢ It receives a reward 𝑟𝑘 and is transported to a new state 𝑠𝑘+1.

➢ The agent considers taking the next action 𝑎𝑘+1.

➢ The Q-value 𝑄𝜋(𝑠𝑘, 𝑎𝑘) is then updated as:

𝑄𝜋 𝑠𝑘, 𝑎𝑘 ← 𝑄𝜋 𝑠𝑘 , 𝑎𝑘 + α𝑒 𝑠, 𝑎 [𝑟𝑘 + 𝛾𝑄𝜋 𝑠𝑘+1, 𝑎𝑘+1 − 𝑄𝜋 𝑠𝑘 , 𝑎𝑘 ]

• -greedy policy is used i.e. random actions are taken with probability 

 to allow exploration. Otherwise greedy actions are executed.

24
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• Wakkanai

• Much colder climate

• Average Annual Temp = 

6.2°C

• Observe behavior at a 

location that has never 

been experienced
• Tokyo

• Training grounds

• Average Annual Temp = 

15.6°C
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Battery profiles 

for SARSA and 

Optimal Policy 

are very similar

• Comparison with omniscient Offline Policy

• Near Perfect Energy Neutral Performance

Near Perfect 

Node Level 

Energy Neutrality

Tokyo, 2011
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• Trained in 

Tokyo, 2010

• Implemented in 

Tokyo, 2011

• Adaptation to 

change in 

weather
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• Trained with Tokyo 2010 weather

• Implemented in Wakkanai, 2011

SARSA Policy and Offline Policy have similar battery profiles
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• Trained in Tokyo, 2010

• Implemented in Wakkanai, 2011

• Weather Forecast enhances perfomance
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• Half Solar Panel Capacity 

• After training for 1000 iterations with 𝛼 = 0.1 and 𝜖 = 0.7

Watermarked, dashed 

lines are corresponding 

values for full solar 

panel capacity
Tokyo

31-Oct-2011
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• Node Power Consumption increases by 2.5 times

• After training for 1000 iterations with 𝛼 = 0.1 and 𝜖 = 0.7

Watermarked, dashed 

lines are corresponding 

values for full solar 

panel capacity
Tokyo

31-Oct-2011
Tokyo

31-Oct-2011



E
M

SO
F
T

 2
0
1
7
, S

E
O

U
L

CONCLUSION

• Reinforcement Learning using SARSA() is capable of 
attaining near-perfect node level energy neutrality.

• SARSA() is able to learn from its working environment and 
adapt accordingly to achieve near-perfect node level energy 
neutrality.

• Inclusion of weather forecast information helps in achieving 
node level energy neutrality
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Time (Day)

Battery (%)

278 302
0

20

40

60

80

100
Battery is 

overcharged

282 292 297287 307

Energy 
Harvested (%)

Naive Policy

SARSA Policy

Offline Policy

Constant 
Duty Cycle
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Battery (%)

Energy 
Harvested (%)Duty Cycle (%)

1 4 8 12 16 20 24
0

20
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80

100

Time (Hour)
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