

Adaptive Power Management in Solar Energy Harvesting Wireless Sensor Node using Reinforcement Learning

SHASWOT SHRESTHAMALI

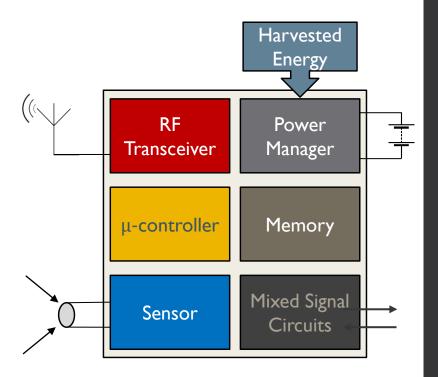
MASAAKI KONDO HIROSHI NAKAMURA

THE UNIVERSITY OF TOKYO

EMBEDDED SYSTEMS WEEK, EMSOFT 2017, SEOUL

INTRODUCTION

- Energy Harvesting Wireless Sensor • Nodes (EHWSNs) are wireless sensor nodes with
 - An energy buffer (battery)
 - Energy harvesting module(s) (e.g. solar panels)
- IoT will require (trillions of) diverse sensor nodes deployed in different environments.
- Sensor Nodes should work autonomously and perpetually.
 - Maximize utility of sensor node
 - Sustainable and maintenance-free



Block diagram of an EHWSN

PROBLEM DEFINITION

Perpetual operation and maximization of sensor node utility can be achieved if:

> ENERGY HARVESTED = ENERGY CONSUMED Node Level Energy Neutrality

EMSOFT 2017, SEOUL

THE PROBLEM

Unreliable energy harvesting

- Unpredictable energy profiles
- Predictions are unreliable

• Strategies change with changes in environment

- Change in location
- Change in climate
- Change in device parameters

Scaling

 Billions/trillions diverse sensors deployed in unique working environments

PREVIOUS APPROACHES TO ACHIEVING NODE LEVEL ENERGY NEUTRALITY

Research	Approach	Limitations
Power management in energy harvesting sensor networks, Kansal et. al (2007)	Predict energy to be harvested and determine duty cycle	Performance dependent on prediction mechanism
Adaptive control of duty cycling in energy-harvesting wireless sensor networks, Vigorito et. al (2007)	Linear Quadratic Control System	Hyper parameters need to be manually adjusted
A learning theoretic approach to energy harvesting communication system optimization, Blasco et. al (2013)	Reinforcement Learning	Applicable for sensor nodes with communications as the only power consuming operation.

25-Mar-20

Hand-engineered solutions for all possible scenarios is **impractical**.

SOLUTION

We want a **one-size-fits-all** solution i.e. sensor nodes that:

- learns the optimal strategy through
 - Context aware action perception learning cycle
- **adapts** once they have been deployed in the environment.

25-Mar-20

PROBLEM DEFINITION

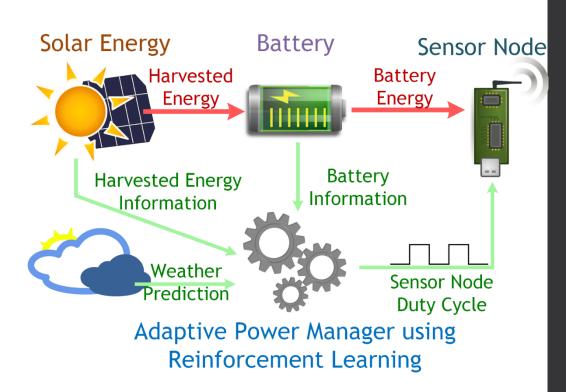
- Perpetual operation and maximization of sensor node utility can be achieved if:
- ENERGY HARVESTED = ENERGY CONSUMED
 - Node Level Energy Neutrality
- Battery is never completely full or depleted
- Sensor node maintains a minimum level of operation at all times
 - Duty Cycling

SYSTEM MODEL

Solar EHWSN

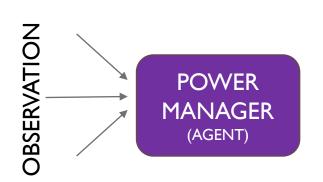
- a load that consumes power depending on its duty cycle
- Higher power consumption implies higher utility
- sensing/communication functions are irrelevant.

 Use Reinforcement Learning (RL) to arrive at an optimal control policy.



- Type of machine learning based on experience rather than instructions
 - Evaluative feedback instead of Instructive feedback
- Agent interacts with environment to receive rewards.
 GOAL: Maximize the total (discounted) CUMULATIVE reward.

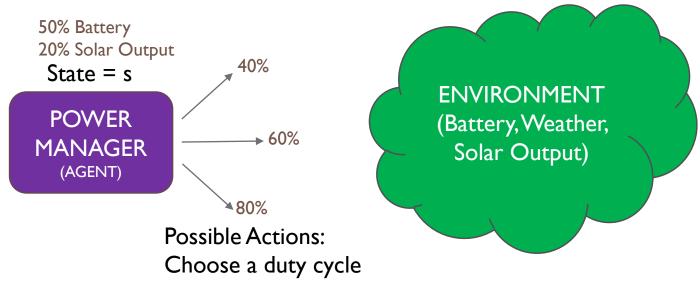
- Type of machine learning based on experience rather than instructions
 - Evaluative feedback instead of Instructive feedback
- Agent interacts with environment to receive rewards. GOAL: Maximize the total (discounted) CUMULATIVE reward.



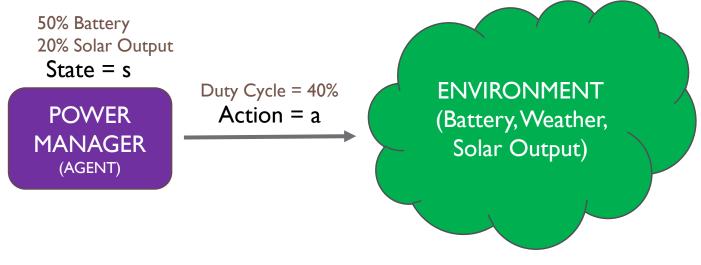
ENVIRONMENT (Battery, Weather, Solar Output)

- Type of machine learning based on experience rather than instructions
 - Evaluative feedback instead of Instructive feedback
- Agent interacts with environment to receive rewards.
 GOAL: Maximize the total (discounted) CUMULATIVE reward.

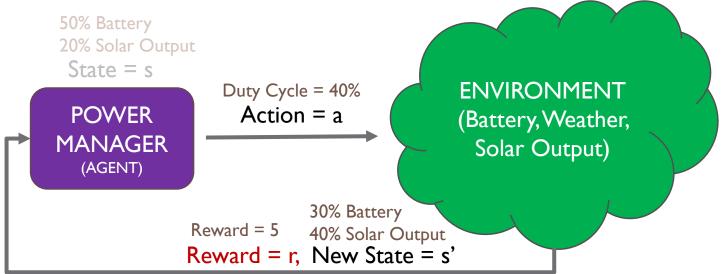
- Type of machine learning based on experience rather than instructions
 - Evaluative feedback instead of Instructive feedback
- Agent interacts with environment to receive rewards. GOAL: Maximize the total (discounted) CUMULATIVE reward.



- Type of machine learning based on experience rather than instructions
 - Evaluative feedback instead of Instructive feedback
- Agent interacts with environment to receive rewards.
 GOAL: Maximize the total (discounted) CUMULATIVE reward.



- Type of machine learning based on experience rather than instructions
 - Evaluative feedback instead of Instructive feedback
- Agent interacts with environment to receive rewards.
 GOAL: Maximize the total (discounted) CUMULATIVE reward.



STATE DEFINITION

State at epoch $t_k = (S_{dist}(t_k), S_{batt}(t_k), S_{eharvest}(t_k), S_{day}(t_k))$

Distance from energy neutrality, $S_{dist}(t_k)$	Battery, $S_{batt}(t_k)$	Harvested Energy, $S_{eharvest}(t_k)$	Weather Forecast, $S_{day}(t_k)$
- 20000 mWh	Low (< 20%)	0 mWh	Very little sun
- I9000 mWh	Mid (20% to 80%)	0 - 100 mWh	Overcast
:	High (> 80%)	100 mWh - 500 mWh	Partly Cloudy
0 mWh		500 mWh - 1000 mWh	Fair
:		1000 mWh - 1500 mWh	Sunny
I9000 mWh		I 500 mWh - 2000 mWh	Very Sunny
20000 mWh		> 2000 mWh	

ACTION SPACE

Choose duty cycle of the sensor node

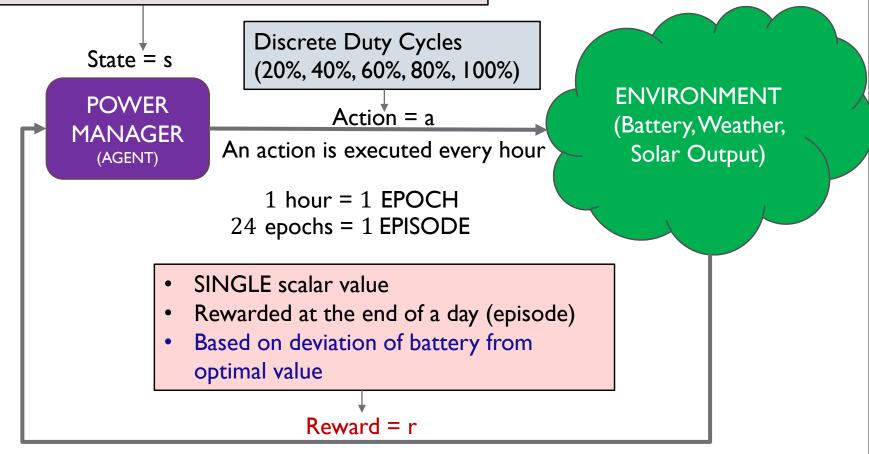
 $A = a(t_k) \in \{1, 2, 3, 4, 5\}$

$\begin{array}{c} \textbf{ACTION} \\ a(t_k) \end{array}$	DUTY CYCLE (%)	ENERGY CONSUMED PER HOUR (mWh)
I	20	100
2	40	200
3	60	300
4	80	400
5	100	500

25-Mar-20

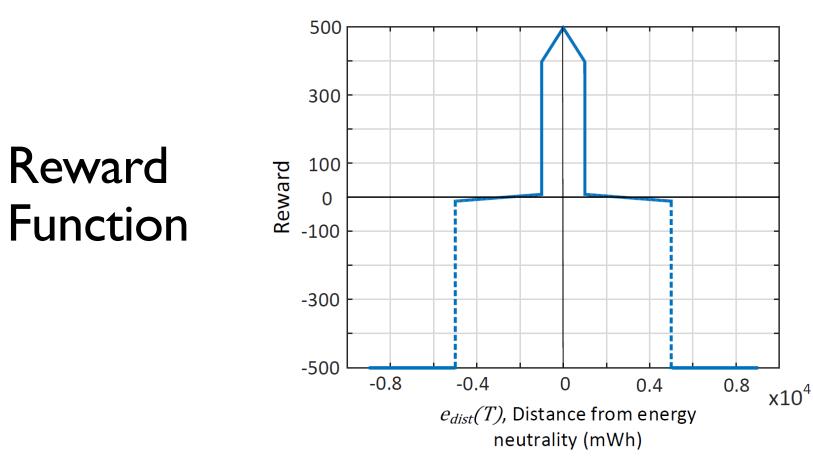
- Battery Level (3)
- Weather Forecast (6)
- Harvested Energy (7)
- Energy Neutral Performance (ENP) (41)
 - Current battery Optimal battery level

Calculated using statistical
data about the energy harvesting environment



EMSOFT 2017, SEOUL

18



- Awarded at the end of an episode (day).
- Ideally, difference between initial and final battery levels = 0
- Reward scheme depends on **Terminal Energy Neutral Performance** (TENP) i.e. ENP at the end of the episode.

THE LEARNING PROCESS

- Simulate using historical weather data for Tokyo, 2010.
- Agent tries various strategies, learns which policies are best and remembers them.
- Learning Algorithm: SARSA(λ) Learning
- Compare with Offline Policy for 2011
 - Offline Policy is calculated using assuming an omniscient solar energy predictor and Linear Programming methods.
 - Gives the optimal policy.
 - This is not a realistic solution as it requires perfect information about the future.
 - Only for comparison purposes

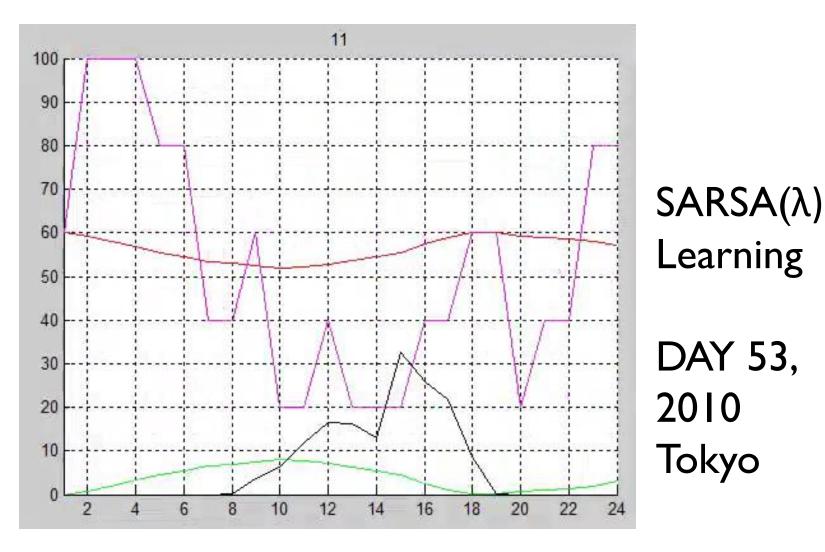
LEARNING

- α (learning rate) = 0.1
- ϵ (exploration ratio) = 0.1
- γ (discount factor) = 0.8
- λ (trace-decay parameter) = 0.8
- N (number of iterations) = 10^4

DAY	Total Energy Received (mWh)	Best Duty Cycle
265	13296.25	110.80%
80	11990.00	99.92%
101	10800.63	90.00%
37	9625.00	80.21%
69	8415.00	70.13%
343	7218.75	60.16%
329	6050.00	50.42%
53	4716.25	39.30%
277	3575.00	29.79%
61	2433.75	20.28%
102	1244.38	10.37%
303	515.625	4.30%
	80 101 37 69 343 329 53 277 61 102	265 13296.25 80 11990.00 101 10800.63 37 9625.00 69 8415.00 343 7218.75 329 6050.00 53 4716.25 277 3575.00 61 2433.75 102 1244.38

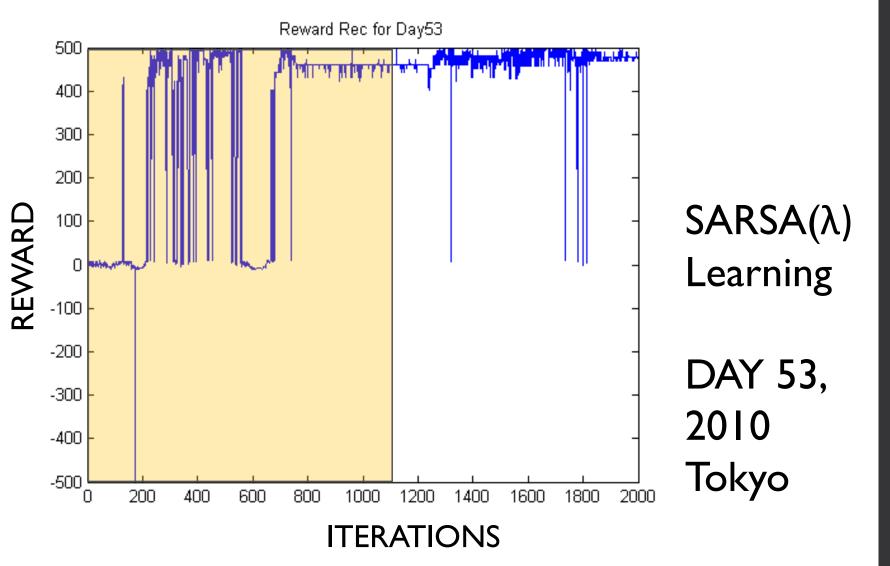
20

LEARNING

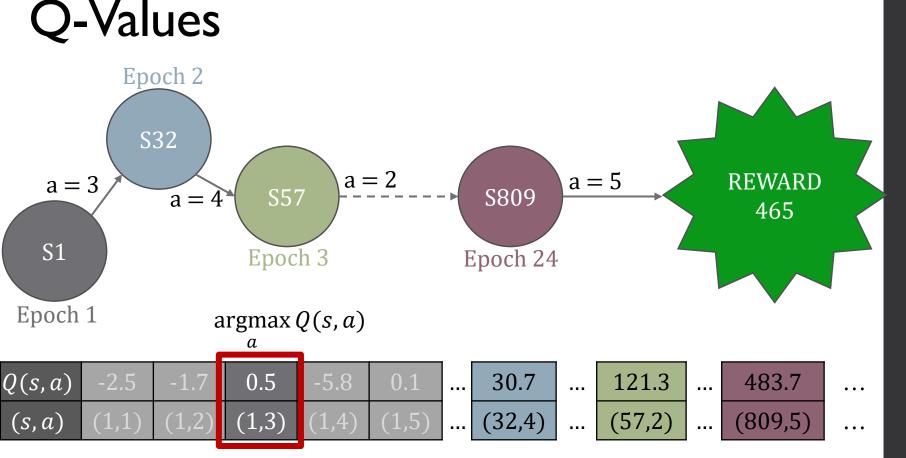


21

LEARNING



EMSOFT 2017, SEOUL



Each state-action pair (s, a) is associated with a Q-value Q(s, a) for a particular policy π .

Q(s, a) is the expected cumulative reward if you take action a at state s and follow π .

23

$SARSA(\lambda)$

> Each state action pair is initialized to an eligibility value (trace), e(s, a) = 0

- Every time (s, a) is visited, e(s, a) = e(s, a) + 1
- Otherwise, e(s, a) decays by a factor of $\gamma \lambda$.
- The value of e(s, a) determines how *influential* that state-action pair was in obtaining the reward at the end of an episode.
- > Agent starts at state s_k and takes some action a_k according to policy π .
- \blacktriangleright It receives a reward r_k and is transported to a new state s_{k+1} .
- > The agent considers taking the next action a_{k+1} .
- > The Q-value $Q^{\pi}(s_k, ak)$ is then updated as:

 $Q^{\pi}(s_k, a_k) \leftarrow Q^{\pi}(s_k, a_k) + \alpha e(s, a)[r_k + \gamma Q^{\pi}(s_{k+1}, a_{k+1}) - Q^{\pi}(s_k, a_k)]$

ε-greedy policy is used i.e. random actions are taken with probability
 ε to allow exploration. Otherwise greedy actions are executed.

IMPLEMENTATION

- Wakkanai
- Much colder climate
- Average Annual Temp = 6.2°C
- Observe behavior at a location that has never been experienced

Tokyo

Hokkaido

Yamaqata Miya

Fukushima

Tokvo Kanagawa

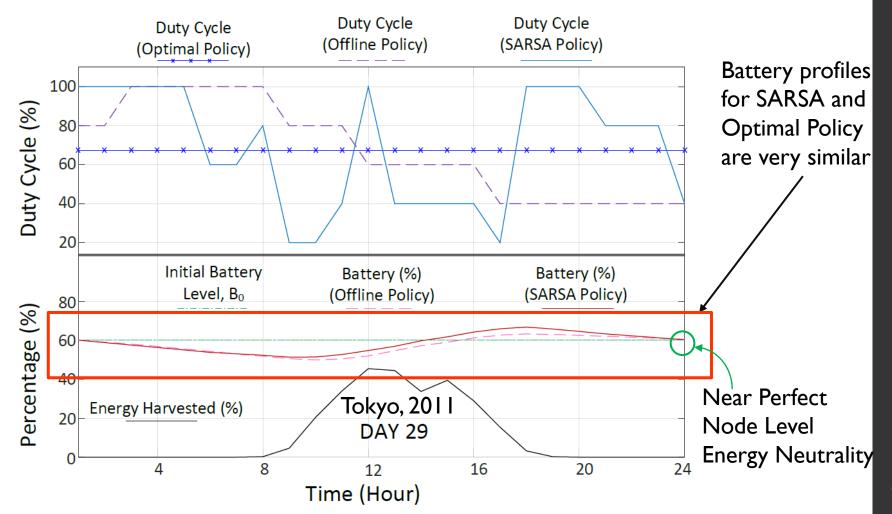
Okinawa

hizuoka

Wakayama

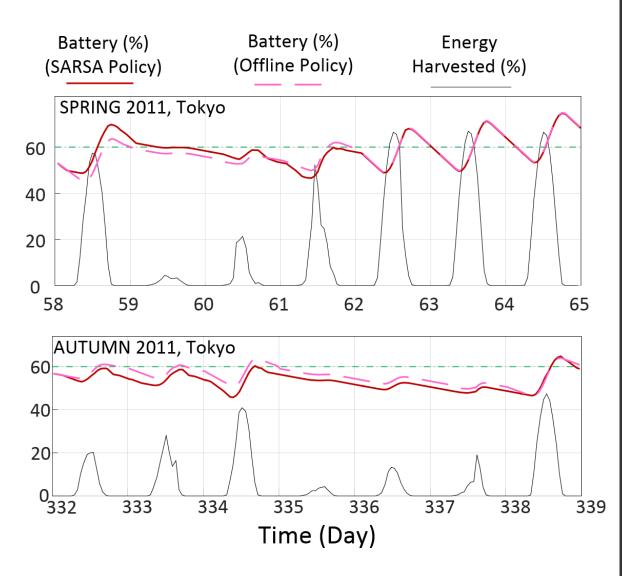
- Training grounds
- Average Annual Temp = 15.6°C

- Comparison with omniscient Offline Policy
- Near Perfect Energy Neutral Performance

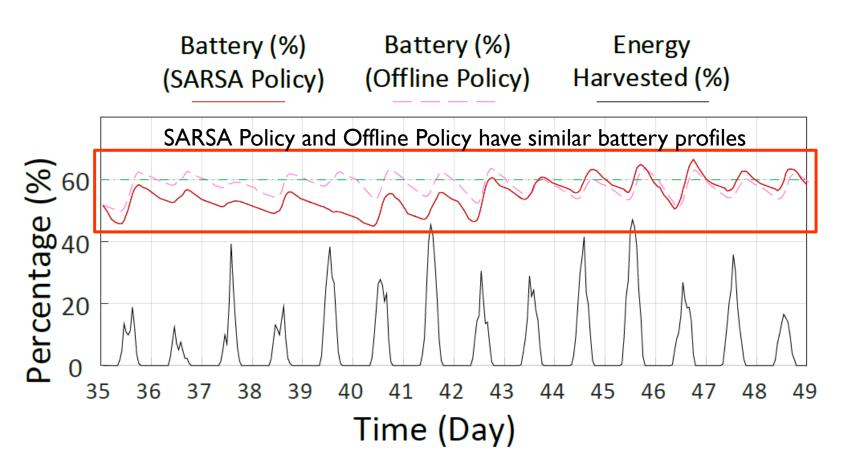


25-Mar-20

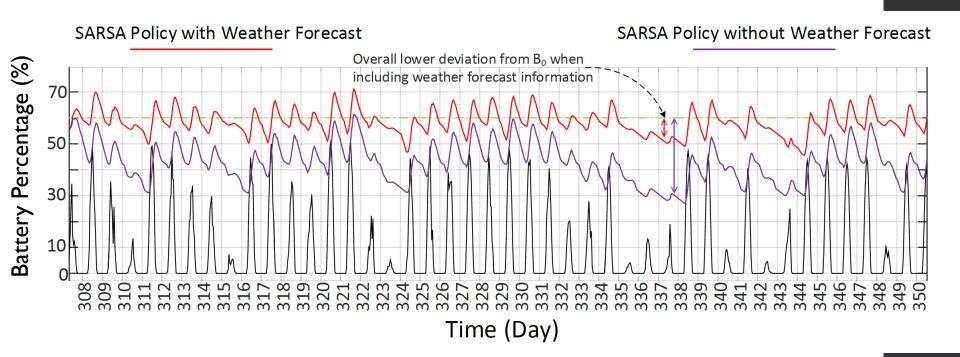
- Trained in Tokyo, 2010
- Implemented in Tokyo, 2011
- Adaptation to change in weather



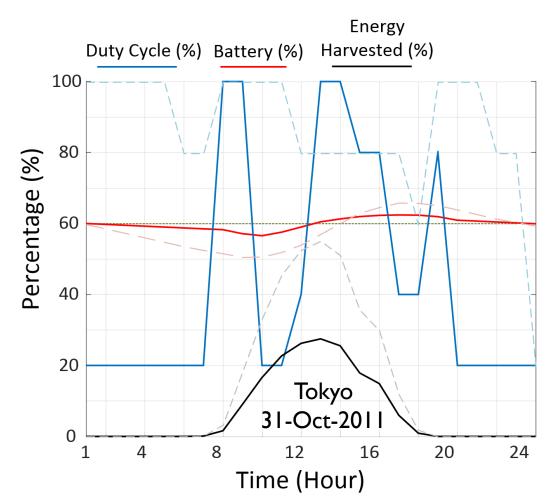
- Trained with Tokyo 2010 weather
- Implemented in Wakkanai, 2011



- Trained in Tokyo, 2010
- Implemented in Wakkanai, 2011
- Weather Forecast enhances perfomance

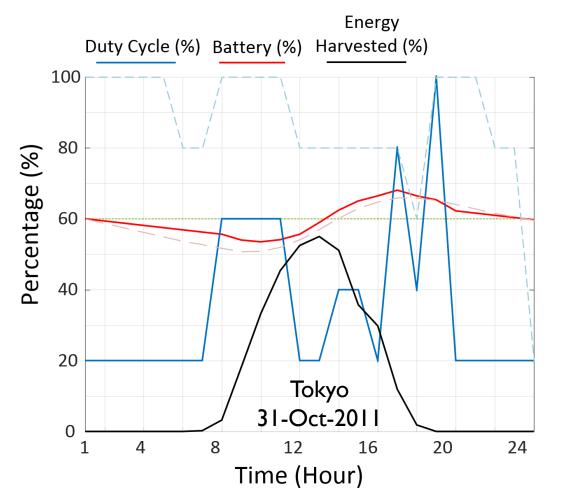


- Half Solar Panel Capacity
- After training for 1000 iterations with $\alpha = 0.1$ and $\epsilon = 0.7$



Watermarked, dashed lines are corresponding values for full solar panel capacity 25-Mar-20

- Node Power Consumption increases by 2.5 times
- After training for 1000 iterations with $\alpha = 0.1$ and $\epsilon = 0.7$



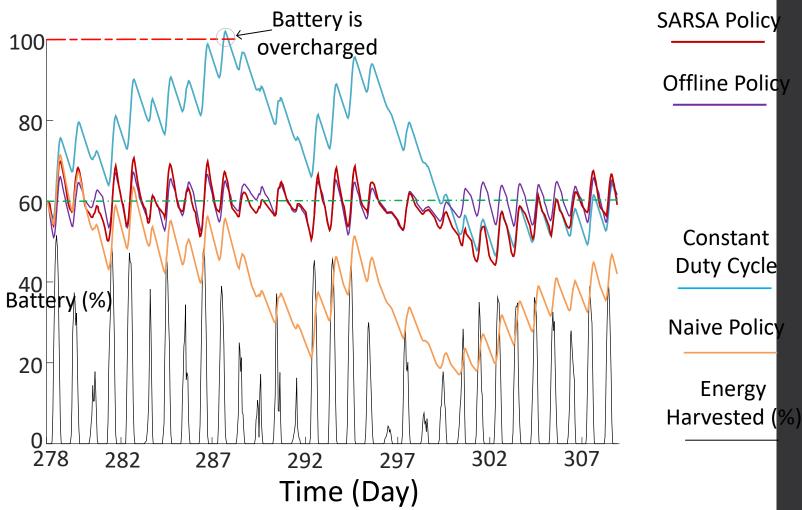
Watermarked, dashed lines are corresponding values for full solar panel capacity 25-Mar-20

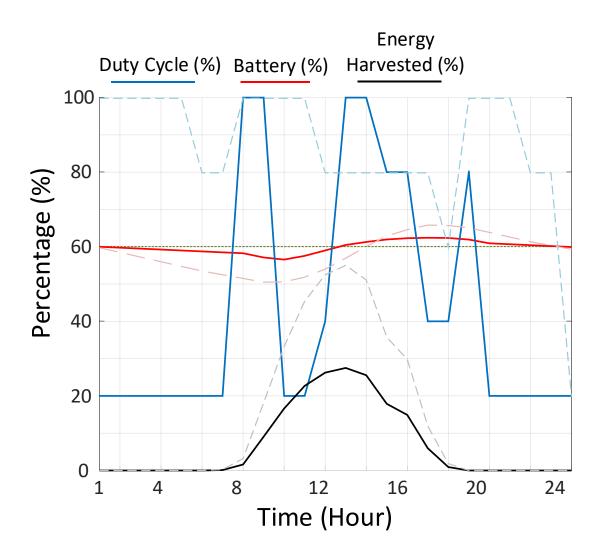
CONCLUSION

- Reinforcement Learning using SARSA(λ) is capable of attaining near-perfect node level energy neutrality.
- SARSA(λ) is able to learn from its working environment and adapt accordingly to achieve near-perfect node level energy neutrality.
- Inclusion of weather forecast information helps in achieving node level energy neutrality

THANKYOU FOR LISTENING

shaswot@hal.ipc.i.u-tokyo.ac.jp





35