
We use a simplified system model that consist of a

solar panel, an ideal battery, a sensor node and a

RL power management unit that specifies the duty

cycle of the sensor node.

REINFORCEMENT LEARNING FOR POWER MANAGEMENT IN 

ENERGY HARVESTING SENSOR NODES*
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In the near future, Internet of Things (IoT) will consist of billions and trillions of nodes. Energy Harvesting Wireless Sensor Nodes (EHWSN) play a critical role in forming a

sustainable, maintenance-free network of perpetually communicating autonomous devices for the IoT infrastructure. Energy autonomy (neutrality) of the sensor nodes

needs to be ensured for perpetual operation. Here we consider a case of a solar energy harvesting sensor node.

Shaswot SHRESTHAMALI, Masaaki KONDO, Hiroshi NAKAMURA

Since heuristic policies will not suffice, the most

practical solution is to use a context aware

perception-action cyclic approach. Our solution

is to use Reinforcement Learning (RL). The power

manager learns the power management policy by

interacting with the environment and memorizing

the best strategy after numerous hit-and-trial

interactions.

- States: Defined by battery level, harvested 

energy, weather forecast and energy neutral 

performance (ENP)

- Actions: Choose a duty cycle

- Reward: Received at end of day (episode) 

depending on net energy difference

- Learning: SARSA -  with eligibility traces

2. Adaptivity

The node has to be able to adapt to changes in

energy harvesting profile due to

- Diurnal Variations

- Seasonal Variations

- Climatic Variations

- Changes in device power consumption

- Battery Degradation

1. Energy Neutral Operation

The node needs to be energy neutral. The amount

of energy harvested should equal the amount of

energy consumed by the node. This way we can

ensure that battery will never go empty and that

none of the harvested energy goes to waste. This is

not a trivial issue because the energy harvested is

often unreliable and unpredictable.

3. Diversity and Scaling

When we deal trillions of different sensor nodes,

customizing the power management policy for each

node according to its power rating and environment

will be incredibly impractical. Moreover, the policy

may have to revised if their working environment

changes. Instead, we need a one-size-fits-all

solution that can work for all types of EHWSN

scenarios.

SIMULATION PARAMETERS

 Battery: 40,000 mWh (ideal)

 Node power consumption: 100 mWh to 500

mWh (5 discrete duty cycles)

 Solar power: 0 to 3000 mWh (Energy profiles

obtained from Japan Meteorological Agency)

 Weather Forecast: 6 different types (Very little

sun, Overcast, Partly Cloudy, Fair, Sunny, Very

Sunny)

 Training: Solar data for Tokyo, 2010

 Testing: Solar data for :

 Wakkanai, 2011

 Tokyo, 2011

Figure 5: Inclusion of weather forecast enhances performance
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Figure 2: SARSA Method vs. Optimal Policy Figure 3: Adaptation to Seasonal Changes

We compare the performance of our proposed SARSA -  algorithm with an optimal policy. The Optimal

Policy uses non-causal information and linear optimization techniques to arrive at an optimum solution. We

compare the performance of the two policies in different seasons and locations. We also show how

including weather forecast information contributes to enhancing the performance of our method.

In the above figure, we observe that both

policies have similar battery profiles. While the

two policies may differ in how they allocate the

energy, at the end of the day, both of them

come very close to perfect energy neutrality.

The actual net deviation from the initial battery

level (60%) was only 491.875mWh and

191.875 mWh for SARSA and Optimal Policy

respectively.

Our method is able to adapt to both spring and autumn

solar energy profiles. The resultant battery profile

differs very little from the optimum policy.

This is largely due to our novel RL problem formulation

(state definition and reward function). Because of our

unique RL problem formulation, the power manager

takes energy neutral performance into account when

making decisions rather than only the battery reserve

level.

Our proposed method adapts well in Wakkanai, a location

that has a drastically different climate from the one it was

trained in.
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Figure 1: System Model

Figure 4: Adaptation to a new location

Furthermore, we show that inclusion of weather forecast

information results in better results.

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 
0  

20 

40 

60 

Time (Day)

B
at

te
ry

 (
%

)

Proposed 
Method

Optimal Policy

Wakkanai, 2011





INTRODUCTION

CHALLENGES

EXPERIMENTAL RESULTS

REINFORCEMENT LEARNING AS A SOLUTION

4 8 12 16 20 24
0  

20 

40 

60 

80 

100

20 

40 

60 

80 

D
ut

y 
C

yc
le

 (
%

)
B

at
te

ry
 (

%
)

Optimal Policy using 
non-causal data

Proposed 
Method

Time (Hour)

Solar Energy Profile

DAY 29

Tokyo 2011

Our method comes 
very close to the 
optimal solution

0

10

30

50

70

3
0

8
3

0
9

3
1

0
3

1
1

3
1

2
3

1
3

3
1

4
3

1
5

3
1

6
3

1
7

3
1

8
3

1
9

3
2

0
3

2
1

3
2

2
3

2
3

3
2

4

Time (Day)

B
at

te
ry

 (
%

)

Lower deviation when including 
weather forecast information

Wakkanai 2011

Solar Energy 
Profile

Without Weather 
Forecast

With Weather 
Forecast


